MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Novel AI Algorithm for Mammography Interpretation Can Successfully Spot Breast Cancer Years Before Radiologists

By MedImaging International staff writers
Posted on 13 Jan 2021
Image: DeepHealth`s AI identifies cancer in a patient one year earlier than detected in practice (Photo courtesy of DeepHealth)
Image: DeepHealth`s AI identifies cancer in a patient one year earlier than detected in practice (Photo courtesy of DeepHealth)
A novel artificial intelligence (AI) algorithm for mammography interpretation has demonstrated the ability to detect breast cancer a year or more earlier than current practice.

DeepHealth (Cambridge, MA, USA), a wholly owned subsidiary of RadNet, Inc. (Los Angeles, CA, USA), compared its AI to five full-time, breast-fellowship-trained expert radiologists reading the same screening mammograms. The software exhibited higher performance than all five radiologists, and the results suggest that the AI could help detect cancer one to two years earlier than standard interpretation in many cases.

Additionally, the software showed promising generalization capabilities, demonstrating strong performance when tested across clinical sites and populations that were not directly involved in training the AI algorithms. While AI holds tremendous promise for improving screening mammography interpretation, there remain substantial challenges in developing expert-level AI. The new study by DeepHealth demonstrates progress in resolving these challenges.

“Reaching world-class performance requires a new way of building AI,” said Gregory Sorensen, M.D., CEO, and co-founder of DeepHealth. “The brute-force methods that have worked so well in other domains, such as self-driving cars or game playing, where data is plentiful, have not translated effectively to many parts of medicine, where human data is often scarce. For example, to train the technology for better detection, AI algorithms must be developed from annotated data where the cancer status is known. Such data can be difficult to obtain. Then, to validate performance, the AI should be tested across different clinical sites and patient populations in different scenarios.”

“We have developed an approach that mimics how humans often learn by progressively training the AI models on more difficult tasks. By leveraging prior information learned in each successive training stage, this strategy results in AI that detects cancer accurately while also relying less on highly-annotated data,” said lead author Bill Lotter, Ph.D., CTO, and co-founder of DeepHealth. “Our approach and validation extend to 3D mammography, which is particularly important given its growing use and the significant challenges it presents for AI.”

Related Links:
DeepHealth
RadNet, Inc.


Digital Radiographic System
OMNERA 300M
New
Mobile X-Ray System
K4W
Half Apron
Demi
Biopsy Software
Affirm® Contrast

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

General/Advanced Imaging

view channel
Image: The Angio-CT solution integrates the latest advances in interventional imaging (Photo courtesy of Canon Medical)

Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities

Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more