High-Resolution Thermal Imaging Helps Monitor Breast Tumors
|
By MedImaging International staff writers Posted on 17 Sep 2020 |

Image: Lead author Dr. Adolfo Lozano working on the proof-of-concept computer model (Photo courtesy of UTD)
Thermographic detection of pathophysiologic changes within the breast could aid tumor monitoring without the need for ionizing mammography radiation, according to a new study.
Researchers at the University of Texas Dallas (UTD; USA) and the University of Texas (UT) Southwestern Medical Centre (UTSW; Dallas, TX, USA) conducted an experimental study to determine the individual thermal characteristics of breast cancer by constructing a computational thermal model calibrated to clinical data consisting of high-resolution infrared (IR) images, three-dimensional (3D) breast surface geometries, and histologically diagnosed internal breast cancer tumor definition of a specific volunteer.
To do so, the researchers quantified blood perfusion rate, metabolic heat generation rate, and other thermal features of both normal and cancerous breast tissues that best matched surface temperatures as recorded on a state-of-the-art IR camera; a 3D scanner recorded surface geometries; and magnetic resonance (MR) imaging data provided tumor definition such as size and spatial location. The 3D scans and tumor definition served as geometric inputs to the model, whereas IR images were used to calibrate the model.
The results showed a detectable temperature differential in metabolic heat generation between the patient's normal and cancerous breasts, as well as increased perfusion rates in the affected breast. They cautioned, however, that the computational model cannot be applied to all types of breast cancer, and that it is specific to each subject’s unique breast cancer molecular subtype, stage, and lesion size. In addition, not all breast cancers generate sufficient heat to be detected via IR thermography. The study was published in the October 2020 issue of Nature Scientific Reports.
“Our goal is to improve digital thermal imaging as a tool for monitoring cancer and its treatment, rather than replacing cancer screening by mammograms,” said senior author Fatemeh Hassanipour, PhD, of the UTD Jonsson School of Engineering and Computer Science. “Infrared imaging could potentially provide useful information in a diagnostic setting to radiologists. We want it to be used like a second device for monitoring tumors.”
Thermography refers to digital infrared thermal imaging (DITI), a test that detects temperature changes on the surface of the skin using an IR thermal camera to record the areas of different temperature in the breasts. The camera displays these patterns as a heat map. As the presence of a tumor is associated with the excessive formation of blood vessels and inflammation in the breast tissue, the theory is that these changes should show up on the IR image as areas with a higher skin temperature.
Related Links:
University of Texas Dallas
Southwestern Medical Centre
Researchers at the University of Texas Dallas (UTD; USA) and the University of Texas (UT) Southwestern Medical Centre (UTSW; Dallas, TX, USA) conducted an experimental study to determine the individual thermal characteristics of breast cancer by constructing a computational thermal model calibrated to clinical data consisting of high-resolution infrared (IR) images, three-dimensional (3D) breast surface geometries, and histologically diagnosed internal breast cancer tumor definition of a specific volunteer.
To do so, the researchers quantified blood perfusion rate, metabolic heat generation rate, and other thermal features of both normal and cancerous breast tissues that best matched surface temperatures as recorded on a state-of-the-art IR camera; a 3D scanner recorded surface geometries; and magnetic resonance (MR) imaging data provided tumor definition such as size and spatial location. The 3D scans and tumor definition served as geometric inputs to the model, whereas IR images were used to calibrate the model.
The results showed a detectable temperature differential in metabolic heat generation between the patient's normal and cancerous breasts, as well as increased perfusion rates in the affected breast. They cautioned, however, that the computational model cannot be applied to all types of breast cancer, and that it is specific to each subject’s unique breast cancer molecular subtype, stage, and lesion size. In addition, not all breast cancers generate sufficient heat to be detected via IR thermography. The study was published in the October 2020 issue of Nature Scientific Reports.
“Our goal is to improve digital thermal imaging as a tool for monitoring cancer and its treatment, rather than replacing cancer screening by mammograms,” said senior author Fatemeh Hassanipour, PhD, of the UTD Jonsson School of Engineering and Computer Science. “Infrared imaging could potentially provide useful information in a diagnostic setting to radiologists. We want it to be used like a second device for monitoring tumors.”
Thermography refers to digital infrared thermal imaging (DITI), a test that detects temperature changes on the surface of the skin using an IR thermal camera to record the areas of different temperature in the breasts. The camera displays these patterns as a heat map. As the presence of a tumor is associated with the excessive formation of blood vessels and inflammation in the breast tissue, the theory is that these changes should show up on the IR image as areas with a higher skin temperature.
Related Links:
University of Texas Dallas
Southwestern Medical Centre
Latest General/Advanced Imaging News
- 3D Scanning Approach Enables Ultra-Precise Brain Surgery
- AI Tool Improves Medical Imaging Process by 90%
- New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
- AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
- Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
- Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
- Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
- New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
- CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
- First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
- AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
- CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Channels
Radiography
view channel
X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
Detecting early-stage cancer or subtle changes deep inside tissues has long challenged conventional X-ray systems, which rely only on how structures absorb radiation. This limitation keeps many microstructural... Read more
AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
Osteoarthritis, a degenerative joint disease affecting over 500 million people worldwide, is the leading cause of disability among older adults. Current diagnostic tools allow doctors to assess damage... Read moreMRI
view channel
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







