CT AI Algorithm Categorizes Lung Nodule Cancer Risk
|
By MedImaging International staff writers Posted on 20 May 2020 |

Image: Indeterminate pulmonary nodules on a lung CT (Photo courtesy of Optellum)
A new study indicates that an artificial intelligence (AI) strategy can correctly assess and categorize suspicious indeterminate pulmonary nodules (IPNs).
Developed at Vanderbilt University (Nashville, TN, USA), Optellum (Oxford, United Kingdom), and other institutions, the lung cancer prediction convolutional neural network (LCP-CNN) model was first trained using computerized tomography (CT) images of IPNs from the U.S. National Lung Screening Trial (NLST), internally validated, and externally tested on cohorts from two academic institutions. The researchers then compared the LCP-CNN to traditional risk prediction models on a very large dataset of 15,693 nodules.
The results showed that the AI risk model was associated with an improved accuracy in the predicted disease risk calculation at each threshold of therapy management, as well as in the external validation cohorts. When compared to conventional risk models currently used, the LCP-CNN algorithm reclassified the IPNs into low-risk or high-risk categories in over a third of cancers and benign nodules. The study was published on April 24, 2020, in the American Journal of Respiratory and Critical Care Medicine.
“The management IPNs remains challenging, and strategies to decrease the rate of unnecessary invasive procedures and to optimize surveillance regimens are needed,” concluded lead author Professor Pierre Massion, MD, of Vanderbilt University, and colleagues. “This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low or high-risk categories, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.”
Deep learning is part of a broader family of AI machine learning methods that use data representations, as opposed to task specific algorithms. It involves CNN algorithms that execute a cascade of many layers of nonlinear processing units in order to enable feature extraction, conversion, and transformation. Each successive layer uses the output from the previous layer as input to form a hierarchical representation.
Related Links:
Vanderbilt University
Optellum
Developed at Vanderbilt University (Nashville, TN, USA), Optellum (Oxford, United Kingdom), and other institutions, the lung cancer prediction convolutional neural network (LCP-CNN) model was first trained using computerized tomography (CT) images of IPNs from the U.S. National Lung Screening Trial (NLST), internally validated, and externally tested on cohorts from two academic institutions. The researchers then compared the LCP-CNN to traditional risk prediction models on a very large dataset of 15,693 nodules.
The results showed that the AI risk model was associated with an improved accuracy in the predicted disease risk calculation at each threshold of therapy management, as well as in the external validation cohorts. When compared to conventional risk models currently used, the LCP-CNN algorithm reclassified the IPNs into low-risk or high-risk categories in over a third of cancers and benign nodules. The study was published on April 24, 2020, in the American Journal of Respiratory and Critical Care Medicine.
“The management IPNs remains challenging, and strategies to decrease the rate of unnecessary invasive procedures and to optimize surveillance regimens are needed,” concluded lead author Professor Pierre Massion, MD, of Vanderbilt University, and colleagues. “This study demonstrates that this deep learning algorithm can correctly reclassify IPNs into low or high-risk categories, potentially reducing the number of unnecessary invasive procedures and delays in diagnosis.”
Deep learning is part of a broader family of AI machine learning methods that use data representations, as opposed to task specific algorithms. It involves CNN algorithms that execute a cascade of many layers of nonlinear processing units in order to enable feature extraction, conversion, and transformation. Each successive layer uses the output from the previous layer as input to form a hierarchical representation.
Related Links:
Vanderbilt University
Optellum
Latest General/Advanced Imaging News
- AI Tool Improves Medical Imaging Process by 90%
- New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
- AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
- Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
- Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
- Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
- New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
- CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
- First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
- AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
- CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
Channels
Radiography
view channel
AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
Osteoarthritis, a degenerative joint disease affecting over 500 million people worldwide, is the leading cause of disability among older adults. Current diagnostic tools allow doctors to assess damage... Read more
AI Algorithm Uses Mammograms to Accurately Predict Cardiovascular Risk in Women
Cardiovascular disease remains the leading cause of death in women worldwide, responsible for about nine million deaths annually. Despite this burden, symptoms and risk factors are often under-recognized... Read moreMRI
view channel
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Ultrasound Probe Images Entire Organ in 4D
Disorders of blood microcirculation can have devastating effects, contributing to heart failure, kidney failure, and chronic diseases. However, existing imaging technologies cannot visualize the full network... Read more
Disposable Ultrasound Patch Performs Better Than Existing Devices
Wearable ultrasound devices are widely used in diagnostics, rehabilitation monitoring, and telemedicine, yet most existing models rely on lead-based piezoelectric ceramics that pose health and environmental risks.... Read moreNuclear Medicine
view channel
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read more
PET Tracer Enables Same-Day Imaging of Triple-Negative Breast and Urothelial Cancers
Triple-negative breast cancer (TNBC) and urothelial bladder carcinoma (UBC) are aggressive cancers often diagnosed at advanced stages, leaving limited time for effective treatment decisions.... Read more
New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis
Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







