Diffusion-Based MRI May Predict Dementia Advent
By MedImaging International staff writers Posted on 24 Oct 2019 |

Image: DSEG images of the reference brain (L), a stable SVD patient (C), and a patient who developed dementia (R) (Photo courtesy of Rebecca Charlton/ Goldsmith University of London).
An automatic diffusion tensor image segmentation (DSEG) technique could help assess brain microstructural damage in cerebral small vessel disease (SVD) patients, claims a new study.
Researchers at St George's University of London (SGUL; United Kingdom), Goldsmiths University of London (United Kingdom), and other institutions conducted a study involving 96 SVD patients (aged 43–89 years) in order to explore the extent to which DSEG, which characterizes microstructural damage using just a single diffusion tensor image (DTI) acquisition at 1.5T, can predict both degree of cognitive decline and conversion to dementia. All patients underwent annual MRI scanning for a period of three years and cognitive assessment for a five-year period. DSEG was used to map the cerebrum into 16 segments.
By comparing segments of an individual with SVD to those of a healthy brain, the researchers derived a DSEG spectrum containing information about grey matter, white matter, cerebrospinal fluid (CSF), and regions with diffusion profiles that deviate from those of healthy tissue. They found that DSEG measures increased over time, indicating progression of SVD burden, and that the DSEG measures also predicted decline in executive function and global cognition, as well as identifying stable individuals versus those who developed dementia.
In all, the results revealed that DSEG was significantly related to decline in executive function and global cognition, with 18.2% of the patients converted to dementia. Baseline DSEG predicted dementia with a balanced classification rate of 76%. No relationship was found between DSEG measures and information processing speed; the researchers suggest that perhaps this is because DSEG covers the entire cerebrum and not just white matter tracts, within which information processing and SVD are strongly associated. The study was published on September 12, 2019, in Stroke.
“Our objective was to find a measure of brain tissue microstructural damage. Using a new technique based on readily available MRI scans, we can predict which people go on to show cognitive decline and develop dementia,” said senior author Rebecca Charlton of Goldsmiths University of London. “In the future, DSEG technology could be used as a decision support system for clinicians. This technique has the potential to identify those patients at risk for cognitive decline and vascular dementia.”
Water molecules undergo random Brownian motion, also known as diffusion. MRI is sensitive to this motion, as controlled by the b-value. When the b-value equals zero, the images are not weighted by diffusion; when the b-value is greater than zero the images are diffusion-weighted. When cellular membranes, the myelin shield, etc., hinder the diffusion, the signal is higher. DTI can thus be used to visualize fiber structures, as it can readily differentiate water molecule diffusivities both along and against the fiber.
Related Links:
St George's University of London
Goldsmiths University of London
Researchers at St George's University of London (SGUL; United Kingdom), Goldsmiths University of London (United Kingdom), and other institutions conducted a study involving 96 SVD patients (aged 43–89 years) in order to explore the extent to which DSEG, which characterizes microstructural damage using just a single diffusion tensor image (DTI) acquisition at 1.5T, can predict both degree of cognitive decline and conversion to dementia. All patients underwent annual MRI scanning for a period of three years and cognitive assessment for a five-year period. DSEG was used to map the cerebrum into 16 segments.
By comparing segments of an individual with SVD to those of a healthy brain, the researchers derived a DSEG spectrum containing information about grey matter, white matter, cerebrospinal fluid (CSF), and regions with diffusion profiles that deviate from those of healthy tissue. They found that DSEG measures increased over time, indicating progression of SVD burden, and that the DSEG measures also predicted decline in executive function and global cognition, as well as identifying stable individuals versus those who developed dementia.
In all, the results revealed that DSEG was significantly related to decline in executive function and global cognition, with 18.2% of the patients converted to dementia. Baseline DSEG predicted dementia with a balanced classification rate of 76%. No relationship was found between DSEG measures and information processing speed; the researchers suggest that perhaps this is because DSEG covers the entire cerebrum and not just white matter tracts, within which information processing and SVD are strongly associated. The study was published on September 12, 2019, in Stroke.
“Our objective was to find a measure of brain tissue microstructural damage. Using a new technique based on readily available MRI scans, we can predict which people go on to show cognitive decline and develop dementia,” said senior author Rebecca Charlton of Goldsmiths University of London. “In the future, DSEG technology could be used as a decision support system for clinicians. This technique has the potential to identify those patients at risk for cognitive decline and vascular dementia.”
Water molecules undergo random Brownian motion, also known as diffusion. MRI is sensitive to this motion, as controlled by the b-value. When the b-value equals zero, the images are not weighted by diffusion; when the b-value is greater than zero the images are diffusion-weighted. When cellular membranes, the myelin shield, etc., hinder the diffusion, the signal is higher. DTI can thus be used to visualize fiber structures, as it can readily differentiate water molecule diffusivities both along and against the fiber.
Related Links:
St George's University of London
Goldsmiths University of London
Latest MRI News
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
Channels
Radiography
view channel
AI Helps Radiologists Spot More Lesions in Mammograms
Breast cancer is a critical health issue, and accurate detection through mammography is essential for effective treatment. However, interpreting mammograms can be challenging for radiologists, particularly... Read more
AI Detects Fatty Liver Disease from Chest X-Rays
Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions... Read moreUltrasound
view channel
Pain-Free Breast Imaging System Performs One Minute Cancer Scan
Breast cancer is one of the leading causes of death for women worldwide, and early detection is key to improving outcomes. Traditional methods like mammograms and ultrasound have their limitations, particularly... Read more
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more