Innovative Low-Field MRI Improves Image Quality
By MedImaging International staff writers Posted on 14 Oct 2019 |

Image: Lung cysts are clearer using high-performance low field MRI (R) compared to standard MRI (L) (Photo courtesy of Adrienne Campbell-Washburn/ NIH).
A high-performance, low magnetic-field magnetic resonance imaging (MRI) system vastly improves image quality, making medical imaging more affordable and accessible for patients.
Researchers at the U.S. National Institutes of Health (NIH; Bethesda, MD, USA) and Siemens Healthcare (Siemens; Erlangen, Germany) first modified a commercial MAGNETOM Aera 1.5T MRI system to operate at 0.55T, but maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. Studies were then conducted to evaluate potential applications in MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies.
The researchers found that when comparing 0.55T images obtained to those obtained at 1.5T, lung cysts and surrounding tissues in patients with lymphangioleiomyomatosis (LAM) were seen more clearly. They also found that inhaled oxygen could increase the brightness of lung tissue more effectively when using the lower magnetic field strength, compared to the higher field strength, providing a unique view of the distribution of oxygen in the body. Similar advantages of low-field MRI were seen during catheterization procedures. The study was published on October 1, 2019, in Radiology.
“MRI of the lung is notoriously difficult and has been off-limits for years because air causes distortion in MRI images,” said lead author Adrienne Campbell-Washburn, PhD, of the NIH. “A low-field MRI system equipped with contemporary imaging technology allows us to see the lungs very clearly. Plus, we can use inhaled oxygen as a contrast agent. Imaging the upper airway with this system may also offer valuable clinical information for both sleep and speech disorders.”
MRI scanners can have ultra-weak, weak, medium, strong, and super-strong magnetic fields. The highest-quality pictures are usually taken by using superconducting magnetic systems generating very strong magnetic fields, which traditionally provide the highest image resolution.
Related Links:
U.S. National Institutes of Health
Researchers at the U.S. National Institutes of Health (NIH; Bethesda, MD, USA) and Siemens Healthcare (Siemens; Erlangen, Germany) first modified a commercial MAGNETOM Aera 1.5T MRI system to operate at 0.55T, but maintaining high-performance hardware, shielded gradients (45 mT/m; 200 T/m/sec), and advanced imaging methods. Studies were then conducted to evaluate potential applications in MRI-guided cardiovascular catheterizations with metallic devices, diagnostic imaging in high-susceptibility regions, and efficient image acquisition strategies.
The researchers found that when comparing 0.55T images obtained to those obtained at 1.5T, lung cysts and surrounding tissues in patients with lymphangioleiomyomatosis (LAM) were seen more clearly. They also found that inhaled oxygen could increase the brightness of lung tissue more effectively when using the lower magnetic field strength, compared to the higher field strength, providing a unique view of the distribution of oxygen in the body. Similar advantages of low-field MRI were seen during catheterization procedures. The study was published on October 1, 2019, in Radiology.
“MRI of the lung is notoriously difficult and has been off-limits for years because air causes distortion in MRI images,” said lead author Adrienne Campbell-Washburn, PhD, of the NIH. “A low-field MRI system equipped with contemporary imaging technology allows us to see the lungs very clearly. Plus, we can use inhaled oxygen as a contrast agent. Imaging the upper airway with this system may also offer valuable clinical information for both sleep and speech disorders.”
MRI scanners can have ultra-weak, weak, medium, strong, and super-strong magnetic fields. The highest-quality pictures are usually taken by using superconducting magnetic systems generating very strong magnetic fields, which traditionally provide the highest image resolution.
Related Links:
U.S. National Institutes of Health
Latest MRI News
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
Channels
Radiography
view channel
AI Helps Radiologists Spot More Lesions in Mammograms
Breast cancer is a critical health issue, and accurate detection through mammography is essential for effective treatment. However, interpreting mammograms can be challenging for radiologists, particularly... Read more
AI Detects Fatty Liver Disease from Chest X-Rays
Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions... Read moreUltrasound
view channel
Pain-Free Breast Imaging System Performs One Minute Cancer Scan
Breast cancer is one of the leading causes of death for women worldwide, and early detection is key to improving outcomes. Traditional methods like mammograms and ultrasound have their limitations, particularly... Read more
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more