Portable OCT Scanner Increases Access to Retinal Imaging
|
By MedImaging International staff writers Posted on 11 Jul 2019 |

Image: A portable OCT system costs less than one-tenth of commercial systems (Photo courtesy of Adam Wax/ Duke University).
A lightweight optical coherence tomography (OCT) scanner offers clinically accurate eye scans at a fraction of the cost.
Developed at Duke University (Durham NC, USA), the spectral-domain OCT system was designed using various cost-reduction techniques, including parts that cost less than a tenth of the retail price of commercial systems, and a housing made mostly from three dimensional (3D)-printed plastic sections. In addition, the spectrometer light path is designed to be circular, thus reducing expansions or contractions due to temperature changes, which occur symmetrically; as a result, the optical elements remain aligned. The device also uses a larger detector to make misalignments less likely.
The low-cost OCT system offers an axial resolution of 8.0 μm, a lateral resolution of 19.6 μm, and an imaging depth of 2.7 mm, for a total 6.6-mm field of view in the X and Y directions. In a proof of concept study, clinical imaging was performed on 120 eyes of 60 patients (60 eyes of normal volunteers and 60 eyes with retinal disease) using both the low-cost OCT and a Heidelberg Engineering Spectralis OCT system. Contrast-to-noise ratio (CNR) was measured from resulting images to determine system performance.
The results showed that the new OCT scanner produced images that were 95% as sharp as those taken by the Heidelberg Spectralis, with mean CNR value of low-cost OCT images only 5.6% lower than those of the Spectralis. The new OCT scanner also weighs 15 times less than the commercial system and is much smaller. The total fabrication costs were just USD 5,037, a tenth of the cost of the Spectralis. The results of the study were published on June 28, 2019, in Translational Vision Science & Technology.
“Right now OCT devices sit in their own room and require a PhD scientist to tweak them to get everything working just right. Ours can just sit on a shelf in the office and be taken down, used and put back without problems. We've scanned people in a Starbucks with it,” said senior author biomedical engineer Adam Wax, PhD. “With the growing number of cases of diabetic retinopathy in places like the United States, India and China, we hope we can save a lot of people's sight by drastically increasing access to this technology.”
OCT is the optical analogue of ultrasound; but because light is so much faster than sound, measuring time is more difficult. To time the light waves bouncing back from the tissue being scanned, OCT devices use a spectrometer to determine how much their phase has shifted compared to identical light waves that have traveled the same distance, but have not interacted with tissue. In use since the 1990s, OCT has become the standard of care for the diagnosis of retinal diseases, including macular degeneration, diabetic retinopathy and glaucoma.
Related Links:
Duke University
Developed at Duke University (Durham NC, USA), the spectral-domain OCT system was designed using various cost-reduction techniques, including parts that cost less than a tenth of the retail price of commercial systems, and a housing made mostly from three dimensional (3D)-printed plastic sections. In addition, the spectrometer light path is designed to be circular, thus reducing expansions or contractions due to temperature changes, which occur symmetrically; as a result, the optical elements remain aligned. The device also uses a larger detector to make misalignments less likely.
The low-cost OCT system offers an axial resolution of 8.0 μm, a lateral resolution of 19.6 μm, and an imaging depth of 2.7 mm, for a total 6.6-mm field of view in the X and Y directions. In a proof of concept study, clinical imaging was performed on 120 eyes of 60 patients (60 eyes of normal volunteers and 60 eyes with retinal disease) using both the low-cost OCT and a Heidelberg Engineering Spectralis OCT system. Contrast-to-noise ratio (CNR) was measured from resulting images to determine system performance.
The results showed that the new OCT scanner produced images that were 95% as sharp as those taken by the Heidelberg Spectralis, with mean CNR value of low-cost OCT images only 5.6% lower than those of the Spectralis. The new OCT scanner also weighs 15 times less than the commercial system and is much smaller. The total fabrication costs were just USD 5,037, a tenth of the cost of the Spectralis. The results of the study were published on June 28, 2019, in Translational Vision Science & Technology.
“Right now OCT devices sit in their own room and require a PhD scientist to tweak them to get everything working just right. Ours can just sit on a shelf in the office and be taken down, used and put back without problems. We've scanned people in a Starbucks with it,” said senior author biomedical engineer Adam Wax, PhD. “With the growing number of cases of diabetic retinopathy in places like the United States, India and China, we hope we can save a lot of people's sight by drastically increasing access to this technology.”
OCT is the optical analogue of ultrasound; but because light is so much faster than sound, measuring time is more difficult. To time the light waves bouncing back from the tissue being scanned, OCT devices use a spectrometer to determine how much their phase has shifted compared to identical light waves that have traveled the same distance, but have not interacted with tissue. In use since the 1990s, OCT has become the standard of care for the diagnosis of retinal diseases, including macular degeneration, diabetic retinopathy and glaucoma.
Related Links:
Duke University
Latest General/Advanced Imaging News
- AI-Based Tool Predicts Future Cardiovascular Events in Angina Patients
- AI-Based Tool Accelerates Detection of Kidney Cancer
- New Algorithm Dramatically Speeds Up Stroke Detection Scans
- 3D Scanning Approach Enables Ultra-Precise Brain Surgery
- AI Tool Improves Medical Imaging Process by 90%
- New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
- AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
- Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
- Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
- Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
- New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
- CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
- First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
- AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
- CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
Channels
Radiography
view channel
Routine Mammograms Could Predict Future Cardiovascular Disease in Women
Mammograms are widely used to screen for breast cancer, but they may also contain overlooked clues about cardiovascular health. Calcium deposits in the arteries of the breast signal stiffening blood vessels,... Read more
AI Detects Early Signs of Aging from Chest X-Rays
Chronological age does not always reflect how fast the body is truly aging, and current biological age tests often rely on DNA-based markers that may miss early organ-level decline. Detecting subtle, age-related... Read moreMRI
view channel
MRI Scans Reveal Signature Patterns of Brain Activity to Predict Recovery from TBI
Recovery after traumatic brain injury (TBI) varies widely, with some patients regaining full function while others are left with lasting disabilities. Prognosis is especially difficult to assess in patients... Read more
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more






 Guided Devices.jpg)
