ACR Releases Second Research Road Map on Medical Imaging AI
By MedImaging International staff writers Posted on 24 Jun 2019 |

Image: New research outlines the challenges, opportunities and priorities for foundational research in AI for medical imaging (Photo courtesy of ABM).
The Journal of the American College of Radiology (JACR) has published a report detailing real-world artificial intelligence (AI) challenges and summarizing the priorities for translational research in AI for medical imaging to help accelerate the safe and effective use of AI in clinical practice. The report is the second part of a road map published in Radiology outlining the challenges, opportunities and priorities for foundational research in AI for medical imaging. The two reports are the outcome of an August 2018 workshop convened by the National Institute of Biomedical Imaging and Bioengineering {(NIBIB) Bethesda, MA, USA} to explore the future of AI in medical imaging.
The second report outlines four key priorities, namely creating structured AI use cases, defining and highlighting clinical challenges potentially solvable by AI; establishing methods to encourage data sharing for training and testing AI algorithms to promote generalizability to widespread clinical practice and mitigate unintended bias; establishing tools for validation and performance monitoring for AI algorithms to facilitate regulatory approval; and developing standards and common data elements for seamless integration of AI tools into existing clinical workflows.
“Radiology has transformed the practice of medicine in the past century, and AI has the potential to radically impact radiology in positive ways,” said Krishna Kandarpa, MD, PhD, co-author of the report and director of research sciences and strategic directions at NIBIB. “This roadmap is a timely survey and analysis by experts at federal agencies and among our industry and professional societies that will help us take the best advantage of AI technologies as they impact the medical imaging field.”
“Our companion paper gave a roadmap to advance foundational machine learning research. But for foundational research to benefit patients, novel algorithms must be evaluated and deployed in a safe and effective manner. This new roadmap paper gives guidance for the clinical translation of AI innovation,” said Curtis P. Langlotz, MD, PhD, report co-author and RSNA board liaison for information technology and annual meeting. “Together, these two connected roadmaps show us how AI not only will transform the work of radiologists and other medical imagers, but also will enhance the delivery of care throughout the clinical environment.”
Related Links:
National Institute of Biomedical Imaging and Bioengineering
The second report outlines four key priorities, namely creating structured AI use cases, defining and highlighting clinical challenges potentially solvable by AI; establishing methods to encourage data sharing for training and testing AI algorithms to promote generalizability to widespread clinical practice and mitigate unintended bias; establishing tools for validation and performance monitoring for AI algorithms to facilitate regulatory approval; and developing standards and common data elements for seamless integration of AI tools into existing clinical workflows.
“Radiology has transformed the practice of medicine in the past century, and AI has the potential to radically impact radiology in positive ways,” said Krishna Kandarpa, MD, PhD, co-author of the report and director of research sciences and strategic directions at NIBIB. “This roadmap is a timely survey and analysis by experts at federal agencies and among our industry and professional societies that will help us take the best advantage of AI technologies as they impact the medical imaging field.”
“Our companion paper gave a roadmap to advance foundational machine learning research. But for foundational research to benefit patients, novel algorithms must be evaluated and deployed in a safe and effective manner. This new roadmap paper gives guidance for the clinical translation of AI innovation,” said Curtis P. Langlotz, MD, PhD, report co-author and RSNA board liaison for information technology and annual meeting. “Together, these two connected roadmaps show us how AI not only will transform the work of radiologists and other medical imagers, but also will enhance the delivery of care throughout the clinical environment.”
Related Links:
National Institute of Biomedical Imaging and Bioengineering
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more