Iron Levels in Brain May Predict MS Disabilities
By MedImaging International staff writers Posted on 10 Sep 2018 |

Image: A highly accurate MRI technique can monitor iron levels in the brains of MS patients (Photo courtesy of RSNA).
A new study describes a highly accurate magnetic resonance imaging (MRI) technique that suggests altered deep gray matter iron is associated with the evolution of multiple sclerosis (MS).
Researchers at the University at Buffalo (UB; NY, USA) and the Buffalo Neuroimaging Analysis Center (BNAC; NY, USA) conducted a prospective study in 600 participants with MS to examine deep gray matter using quantitative susceptibility mapping (QSM), and to assess the relationship between susceptibility and clinical disability. All MS patients, and 250 age- and sex-matched healthy control participants were imaged with a 3T MRI scanner to measure deep gray matter magnetic susceptibility, using region of interest and voxelwise methods.
The results revealed that the MS patients had higher levels of iron in the basal ganglia than the control patients. On the other hand, MS patients had lower levels of iron in the thalamus, an important brain region that helps process sensory input by acting as a relay between certain brain structures and the spinal cord. Lower iron content in the thalamus and higher iron content in other deep gray matter structures in MS patients were associated with longer disease duration, higher disability degree, and faster disease progression. The study was published on July 17, 2018, in Radiology.
“Brain atrophy is the current gold standard for predicting cognitive and physical decline in MS, but it has limitations; it takes a long time to see. We need an earlier measure of who will develop MS-related disability,” said lead author Professor Robert Zivadinov, MD, PhD, of UB and BNAC. “The results point to a potential role for quantitative susceptibility mapping in clinical trials of promising new drugs. To be able to act against changes in susceptibility would be extremely beneficial.”
The role of iron accumulation in white and gray matter damage in MS is well known, but it is not yet clear if local changes in brain tissue iron concentrations are a causal factor in neurodegeneration, or a by-product of cell death. Histopathologic and MRI data have consistently shown profound changes in iron concentration in all the central nervous system compartments, with reduced iron content in newly forming white matter lesions, cortical lesions, thalamus and normal-appearing white matter, and higher iron content in the rim of chronic active lesions and structures of the basal ganglia.
Related Links:
University at Buffalo
Buffalo Neuroimaging Analysis Center
Researchers at the University at Buffalo (UB; NY, USA) and the Buffalo Neuroimaging Analysis Center (BNAC; NY, USA) conducted a prospective study in 600 participants with MS to examine deep gray matter using quantitative susceptibility mapping (QSM), and to assess the relationship between susceptibility and clinical disability. All MS patients, and 250 age- and sex-matched healthy control participants were imaged with a 3T MRI scanner to measure deep gray matter magnetic susceptibility, using region of interest and voxelwise methods.
The results revealed that the MS patients had higher levels of iron in the basal ganglia than the control patients. On the other hand, MS patients had lower levels of iron in the thalamus, an important brain region that helps process sensory input by acting as a relay between certain brain structures and the spinal cord. Lower iron content in the thalamus and higher iron content in other deep gray matter structures in MS patients were associated with longer disease duration, higher disability degree, and faster disease progression. The study was published on July 17, 2018, in Radiology.
“Brain atrophy is the current gold standard for predicting cognitive and physical decline in MS, but it has limitations; it takes a long time to see. We need an earlier measure of who will develop MS-related disability,” said lead author Professor Robert Zivadinov, MD, PhD, of UB and BNAC. “The results point to a potential role for quantitative susceptibility mapping in clinical trials of promising new drugs. To be able to act against changes in susceptibility would be extremely beneficial.”
The role of iron accumulation in white and gray matter damage in MS is well known, but it is not yet clear if local changes in brain tissue iron concentrations are a causal factor in neurodegeneration, or a by-product of cell death. Histopathologic and MRI data have consistently shown profound changes in iron concentration in all the central nervous system compartments, with reduced iron content in newly forming white matter lesions, cortical lesions, thalamus and normal-appearing white matter, and higher iron content in the rim of chronic active lesions and structures of the basal ganglia.
Related Links:
University at Buffalo
Buffalo Neuroimaging Analysis Center
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreMRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more