Dolphin Echolocation Could Advance Medical Ultrasound
By MedImaging International staff writers Posted on 11 Jun 2018 |
Increasing our understanding of the dolphin echolocation and communication signals could pave the way for sharper image quality on ultrasound technology.
Researchers at the Lund University (Sweden) department of biomedical engineering built a measuring instrument composed of 47 hydrophones capable of capturing a complete cross-section of dolphin sonar beams transmitted over many different frequencies. Dolphin sounds were then recorded in Kolmården Wildlife Park (Sweden) and in other wildlife parks located in the Bahamas, Honduras, and California (USA). The recordings revealed that dolphins actually emit two intertwined ultrasound beam components at different frequencies, and with slightly different timing.
Calculations revealed that the sound frequency is higher further up in the beam, producing a lighter echo within that area. According to the researchers, the slightly time separated signal components may enable the dolphin to quickly gauge the speed of approaching or fleeing prey, as variations in frequency provide more precise information on the position of an object. Working with researchers at the Lund Centre for Mathematical Sciences, they then developed a mathematical algorithm to disentangle and read the overlapping signals.
The algorithm effectively identified closely located Gaussian shaped transient pulses, even in heavy disruptive noise, automatically detecting and counting the number of transients, and giving the center times and center frequencies of all components. The researchers claim that the algorithm can increase understanding of dolphin communication, drive improvement is sonar devices and echosounders, and could also potentially be used to measure the thickness of organ membranes deep inside the human body. The study was published on May 22, 2018, in The Journal of the Acoustical Society of America.
“High and low frequencies are useful for different things. Sounds with low frequencies spread further under water, whereas sounds with high frequencies can provide more detailed information on the shape of the object,” said senior author Josefin Starkhammar, PhD. “It works almost like a magic formula! Suddenly we can see things that remained hidden with traditional methods. We could copy the principle of using sound beams whose frequency content changes over the cross-section.”
Echolocation is a biological ability to locate objects through sound waves. As Dolphins lack vocal cords, they produce sounds from the nasal air sacs, the blowhole, the larynx, the lungs, and the melon, an organ located in the upper inner area of the head filled with low-density lipids. For echolocation, dolphins emit ultrasounds called “clicks” in the nasal passages. The melon then groups the sounds into beams and amplifies the resonance. Sound waves bounce back from objects in the water to the lower jaw, with the teeth of dolphins work like antennas to receive the signals. The intensity, pitch, and time that it takes the echo to return to the dolphin provide information about the target.
Related Links:
Lund University
Researchers at the Lund University (Sweden) department of biomedical engineering built a measuring instrument composed of 47 hydrophones capable of capturing a complete cross-section of dolphin sonar beams transmitted over many different frequencies. Dolphin sounds were then recorded in Kolmården Wildlife Park (Sweden) and in other wildlife parks located in the Bahamas, Honduras, and California (USA). The recordings revealed that dolphins actually emit two intertwined ultrasound beam components at different frequencies, and with slightly different timing.
Calculations revealed that the sound frequency is higher further up in the beam, producing a lighter echo within that area. According to the researchers, the slightly time separated signal components may enable the dolphin to quickly gauge the speed of approaching or fleeing prey, as variations in frequency provide more precise information on the position of an object. Working with researchers at the Lund Centre for Mathematical Sciences, they then developed a mathematical algorithm to disentangle and read the overlapping signals.
The algorithm effectively identified closely located Gaussian shaped transient pulses, even in heavy disruptive noise, automatically detecting and counting the number of transients, and giving the center times and center frequencies of all components. The researchers claim that the algorithm can increase understanding of dolphin communication, drive improvement is sonar devices and echosounders, and could also potentially be used to measure the thickness of organ membranes deep inside the human body. The study was published on May 22, 2018, in The Journal of the Acoustical Society of America.
“High and low frequencies are useful for different things. Sounds with low frequencies spread further under water, whereas sounds with high frequencies can provide more detailed information on the shape of the object,” said senior author Josefin Starkhammar, PhD. “It works almost like a magic formula! Suddenly we can see things that remained hidden with traditional methods. We could copy the principle of using sound beams whose frequency content changes over the cross-section.”
Echolocation is a biological ability to locate objects through sound waves. As Dolphins lack vocal cords, they produce sounds from the nasal air sacs, the blowhole, the larynx, the lungs, and the melon, an organ located in the upper inner area of the head filled with low-density lipids. For echolocation, dolphins emit ultrasounds called “clicks” in the nasal passages. The melon then groups the sounds into beams and amplifies the resonance. Sound waves bounce back from objects in the water to the lower jaw, with the teeth of dolphins work like antennas to receive the signals. The intensity, pitch, and time that it takes the echo to return to the dolphin provide information about the target.
Related Links:
Lund University
Latest Ultrasound News
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
- Automated Breast Ultrasound Provides Alternative to Mammography in Low-Resource Settings
- Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy
- Wearable Ultrasound Patch Enables Continuous Blood Pressure Monitoring
- AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time
- Ultrasound Device Non-Invasively Improves Blood Circulation in Lower Limbs
- Wearable Ultrasound Device Provides Long-Term, Wireless Muscle Monitoring
- Ultrasound Can Identify Sources of Brain-Related Issues and Disorders Before Treatment
- New Guideline on Handling Endobronchial Ultrasound Transbronchial Needle Samples
Channels
Radiography
view channel
AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
A new study has revealed that an artificial intelligence (AI)-powered solution significantly improves cancer detection in single-reader mammography settings without increasing recall rates, offering a... Read more
Photon Counting Detectors Promise Fast Color X-Ray Images
For many years, healthcare professionals have depended on traditional 2D X-rays to diagnose common bone fractures, though small fractures or soft tissue damage, such as cancers, can often be missed.... Read moreMRI
view channel
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreNuclear Medicine
view channel
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read more
Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read moreGeneral/Advanced Imaging
view channel
AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Lung cancer impacts over 48,000 individuals in the UK annually, and early detection is key to improving survival rates. The UK Lung Cancer Screening (UKLS) trial has already shown that low-dose CT (LDCT)... Read more
Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more
AI System Detects Subtle Changes in Series of Medical Images Over Time
Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more
New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more