Optoacoustic Imaging Augments Breast Mass Assessment
By MedImaging International staff writers Posted on 06 Jun 2018 |

Image: A novel breast imaging system fuses optoacoustics and ultrasound (Photo courtesy of Seno Medical).
A novel breast imaging system fuses optoacoustic (OA) and ultrasound (US) technologies to generate real-time functional and anatomical images of the breast.
The Seno Medical Instruments (San Antonio, TX, USA) Imagio OA/US breast imaging system uses OA to provide a “blood map” around breast masses, while US provides a traditional anatomic image. Unlike current techniques that create images by transmitting and receiving energy in the same form, OA/US imaging transmits photonic energy, but detects acoustic energy; by transmitting multiple bandwidths of laser light, a much broader range of data can be captured, which makes the functional images possible.
The system can thus detect the appearance (or absence) of two of the hallmark indicators of cancer, angiogenesis and deoxygenation, by measuring hemoglobin concentration in the breast tissues. The resulting amalgamation of data helps radiologists confirm or rule out malignancy with more certainty than current diagnostic imaging modalities, and without exposing patients to potentially harmful ionizing X-ray radiation or contrast agents.
A study by researchers at the Northwestern University (NU; Chicago, IL, USA) and other institutions involving 2,105 women conducted to compare the diagnostic utility of the Imagio OA/US breast imaging system to grayscale US alone, found that OA/US downgraded 40.8% of benign mass reads, with a specificity of 43%, compared to 28.1% for grayscale US alone, resulting in a need for fewer subsequent needle biopsies. The study was published in the May 2018 issue of Radiology.
“Needle biopsies are expensive, very stressful to the patient, often require another appointment for the patient, and it can take days to get the results. Patients who are safely downgraded to not needing a biopsy would benefit,” said Stephen Grobmyer, MD, of the Cleveland Clinic (OH, USA) Comprehensive Breast Cancer Program. “Safely reducing the number of breast biopsy procedures through advanced imaging would add a lot of value to the current system. It also may help identify lesions that require biopsy that were thought to be benign by traditional imaging.”
OA is a biomedical imaging modality based on the photoacoustic effect, which results of some of the delivered energy absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband US emission. As optical absorption is closely associated with physiological properties, such as hemoglobin concentration and oxygen saturation, the magnitude of the US emission reveals physiologically specific optical absorption contrast, allowing 2D or 3D images of the targeted areas to be formed.
The Seno Medical Instruments (San Antonio, TX, USA) Imagio OA/US breast imaging system uses OA to provide a “blood map” around breast masses, while US provides a traditional anatomic image. Unlike current techniques that create images by transmitting and receiving energy in the same form, OA/US imaging transmits photonic energy, but detects acoustic energy; by transmitting multiple bandwidths of laser light, a much broader range of data can be captured, which makes the functional images possible.
The system can thus detect the appearance (or absence) of two of the hallmark indicators of cancer, angiogenesis and deoxygenation, by measuring hemoglobin concentration in the breast tissues. The resulting amalgamation of data helps radiologists confirm or rule out malignancy with more certainty than current diagnostic imaging modalities, and without exposing patients to potentially harmful ionizing X-ray radiation or contrast agents.
A study by researchers at the Northwestern University (NU; Chicago, IL, USA) and other institutions involving 2,105 women conducted to compare the diagnostic utility of the Imagio OA/US breast imaging system to grayscale US alone, found that OA/US downgraded 40.8% of benign mass reads, with a specificity of 43%, compared to 28.1% for grayscale US alone, resulting in a need for fewer subsequent needle biopsies. The study was published in the May 2018 issue of Radiology.
“Needle biopsies are expensive, very stressful to the patient, often require another appointment for the patient, and it can take days to get the results. Patients who are safely downgraded to not needing a biopsy would benefit,” said Stephen Grobmyer, MD, of the Cleveland Clinic (OH, USA) Comprehensive Breast Cancer Program. “Safely reducing the number of breast biopsy procedures through advanced imaging would add a lot of value to the current system. It also may help identify lesions that require biopsy that were thought to be benign by traditional imaging.”
OA is a biomedical imaging modality based on the photoacoustic effect, which results of some of the delivered energy absorbed and converted into heat, leading to transient thermoelastic expansion and thus wideband US emission. As optical absorption is closely associated with physiological properties, such as hemoglobin concentration and oxygen saturation, the magnitude of the US emission reveals physiologically specific optical absorption contrast, allowing 2D or 3D images of the targeted areas to be formed.
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreMRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more