Optical Technology Monitors Cerebral Blood Flow Dynamics
By MedImaging International staff writers Posted on 12 May 2018 |

Image: Laser light can measure blood flow in the brain of patients with stroke or traumatic brain injury (Photo courtesy of Srinivasan Lab/ UCD).
A new study describes how a digital camera can be used to measure blood flow in the brain of patients with stroke or traumatic brain injury (TBI).
Developed by researchers at the University of California, Los Angeles (UCLA; USA), interferometric diffusing wave spectroscopy (iDWS) is based on transforming a standard complementary metal-oxide-semiconductor (CMOS) camera into a sensitive detector array by using multimode fiber (MMF) interferometry to identify weak light fluxes that probe deep into biological tissue. The method involves first splitting an emitted laser light beam into ‘sample’ and ‘reference’ paths, and then using the recombined signal to measure coherent light fluctuations.
The sample beam goes into the patient's head and another, stronger, reference beam is routed so that it reconnects with the sample beam before going to the detector, boosting the signal. The boosted signal can measure about 20 speckles of light simultaneously on a single CMOS digital camera chip, instead of necessitating multiple independent photon-counting detector channels. According to the researchers, the highly sensitive and parallel measurement technique is significantly cheaper and more robust than using an array of photon detectors. The study was published on April 26, 2018, in Optica.
“Light-scattering methods are widely used in soft matter physics and biomedical optics to probe dynamics in turbid media. These methods typically rely on fluctuations of coherent light intensity, and therefore cannot accommodate more than a few modes per detector,” concluded lead author Wenjun Zhou, PhD, and colleagues. “This limitation has hindered efforts to measure deep tissue blood flow with high speed, since weak diffuse light fluxes, together with low single-mode fiber throughput, result in low photon count rates. Our setup is very promising, and the cost should be lower.”
Diffusing-wave spectroscopy (DWS) is an optical technique that studies the dynamics of scattered light in the limit of strong multiple scattering. It has been widely used to study colloidal suspensions, foams, emulsions, gels, biological media, and other forms of soft matter. If carefully calibrated, DWS allows the quantitative measurement of microscopic motion in a soft material by identifying speckles (very small spots).
Related Links:
University of California, Los Angeles
Developed by researchers at the University of California, Los Angeles (UCLA; USA), interferometric diffusing wave spectroscopy (iDWS) is based on transforming a standard complementary metal-oxide-semiconductor (CMOS) camera into a sensitive detector array by using multimode fiber (MMF) interferometry to identify weak light fluxes that probe deep into biological tissue. The method involves first splitting an emitted laser light beam into ‘sample’ and ‘reference’ paths, and then using the recombined signal to measure coherent light fluctuations.
The sample beam goes into the patient's head and another, stronger, reference beam is routed so that it reconnects with the sample beam before going to the detector, boosting the signal. The boosted signal can measure about 20 speckles of light simultaneously on a single CMOS digital camera chip, instead of necessitating multiple independent photon-counting detector channels. According to the researchers, the highly sensitive and parallel measurement technique is significantly cheaper and more robust than using an array of photon detectors. The study was published on April 26, 2018, in Optica.
“Light-scattering methods are widely used in soft matter physics and biomedical optics to probe dynamics in turbid media. These methods typically rely on fluctuations of coherent light intensity, and therefore cannot accommodate more than a few modes per detector,” concluded lead author Wenjun Zhou, PhD, and colleagues. “This limitation has hindered efforts to measure deep tissue blood flow with high speed, since weak diffuse light fluxes, together with low single-mode fiber throughput, result in low photon count rates. Our setup is very promising, and the cost should be lower.”
Diffusing-wave spectroscopy (DWS) is an optical technique that studies the dynamics of scattered light in the limit of strong multiple scattering. It has been widely used to study colloidal suspensions, foams, emulsions, gels, biological media, and other forms of soft matter. If carefully calibrated, DWS allows the quantitative measurement of microscopic motion in a soft material by identifying speckles (very small spots).
Related Links:
University of California, Los Angeles
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreMRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more