Stereotactic Radiotherapy System Treats Breast Cancer
By MedImaging International staff writers Posted on 10 Jan 2018 |

Image: The GammaPod dedicated RT system (Photo courtesy of Xcision Medical Systems).
A new cobalt (Co60) teletherapy device delivers a radiation dose to specific areas of the breast, in conjunction with breast conserving treatment.
The Xcision Medical Systems (Columbia, MD, USA) GammaPod system is a dedicated radiation therapy (RT) technology that uses thousands of focused beams of radiation emanating from 36 rotating radioactive Co60 sources, in combination with a two-layer, vacuum-assisted positioning cup that immobilizes the breast during treatment, thus minimizing the radiation dose to the surrounding healthy tissues in the breast, heart, and lungs. The system contains four main components:
• The GammaPod irradiation unit, a hemispherical carrier that holds multiple Co60 sources, a hemispherical dynamically changing collimator system (inside and concentric to the source carrier), a hemi-elliptical-sphere treatment space (inside the collimator) within which the breast is positioned for treatment, and a treatment patient loader that lifts and rotates a patient positioned on a treatment couch from the standing to prone position, which also contains a portal within which the breast immobilization cup is affixed. The irradiation unit is controlled by a computerized treatment control system.
• The Imager loader system, an imaging couch intended to make the imaging geometry identical to that of the treatment geometry. The patient is lifted and rotated from a standing position to prone position for imaging while wearing a breast immobilization device, which is affixed through a portal in the imaging couch.
• The breast immobilization system, a vacuum-assisted breast cup designed to reproducibly hold the breast in place and provide an accurate reference frame to match the tumor with the coordinate system of the irradiation unit. The cup consists of a rigid reusable outer cup with an imbedded stereotactic frame and a thin inner cup joined together by a silicone flange at the chest side. A mild negative pressure is applied between the inner and outer cups, causing the skin of the breast to press against the inner cup, securing it in place.
• A treatment planning system designed specifically for planning breast radiotherapy using the GammaPod by placing the breast images within the stereotactic localization frame coordinate system through an image registration process; optimizing a dynamic and deliverable trajectory of the focal spots of different sizes to realize the prescribed dose to the target volume, while minimizing radiation exposure to the surrounding tissues and structures; and ensuring accurate dose calculation of the optimized plan and providing dosimetric indices for review.
“The GammaPod has the potential to significantly shorten the treatment time to a few sessions or possibly even one treatment,” said Professor Cedric X. Yu, DSc, CEO and founder of Xcision Medical Systems. “We envision that one day we'll be able to neutralize a tumor with a high dose of focused radiation instead of removing it with a scalpel. This approach would spare patients the negative side effects of surgery and prolonged radiation treatments, significantly improving their quality of life.”
Stereotactic radiation therapy is most commonly used to treat brain cancer and cancers in other parts of the body, such as the lung, spine and liver, where it is called stereotactic body radiation therapy (SBRT). Requirements of SBRT include precise localization of the target lesion in the treatment planning process; accounting for tumor motion due to respiration or other changes in the body; highly conformal dose distribution to the target volume, including a steep dose gradient to minimize radiation to surrounding healthy tissue; and image-guidance at the time of dose delivery for verification and adjustment of the target localization.
Related Links:
Xcision Medical Systems
The Xcision Medical Systems (Columbia, MD, USA) GammaPod system is a dedicated radiation therapy (RT) technology that uses thousands of focused beams of radiation emanating from 36 rotating radioactive Co60 sources, in combination with a two-layer, vacuum-assisted positioning cup that immobilizes the breast during treatment, thus minimizing the radiation dose to the surrounding healthy tissues in the breast, heart, and lungs. The system contains four main components:
• The GammaPod irradiation unit, a hemispherical carrier that holds multiple Co60 sources, a hemispherical dynamically changing collimator system (inside and concentric to the source carrier), a hemi-elliptical-sphere treatment space (inside the collimator) within which the breast is positioned for treatment, and a treatment patient loader that lifts and rotates a patient positioned on a treatment couch from the standing to prone position, which also contains a portal within which the breast immobilization cup is affixed. The irradiation unit is controlled by a computerized treatment control system.
• The Imager loader system, an imaging couch intended to make the imaging geometry identical to that of the treatment geometry. The patient is lifted and rotated from a standing position to prone position for imaging while wearing a breast immobilization device, which is affixed through a portal in the imaging couch.
• The breast immobilization system, a vacuum-assisted breast cup designed to reproducibly hold the breast in place and provide an accurate reference frame to match the tumor with the coordinate system of the irradiation unit. The cup consists of a rigid reusable outer cup with an imbedded stereotactic frame and a thin inner cup joined together by a silicone flange at the chest side. A mild negative pressure is applied between the inner and outer cups, causing the skin of the breast to press against the inner cup, securing it in place.
• A treatment planning system designed specifically for planning breast radiotherapy using the GammaPod by placing the breast images within the stereotactic localization frame coordinate system through an image registration process; optimizing a dynamic and deliverable trajectory of the focal spots of different sizes to realize the prescribed dose to the target volume, while minimizing radiation exposure to the surrounding tissues and structures; and ensuring accurate dose calculation of the optimized plan and providing dosimetric indices for review.
“The GammaPod has the potential to significantly shorten the treatment time to a few sessions or possibly even one treatment,” said Professor Cedric X. Yu, DSc, CEO and founder of Xcision Medical Systems. “We envision that one day we'll be able to neutralize a tumor with a high dose of focused radiation instead of removing it with a scalpel. This approach would spare patients the negative side effects of surgery and prolonged radiation treatments, significantly improving their quality of life.”
Stereotactic radiation therapy is most commonly used to treat brain cancer and cancers in other parts of the body, such as the lung, spine and liver, where it is called stereotactic body radiation therapy (SBRT). Requirements of SBRT include precise localization of the target lesion in the treatment planning process; accounting for tumor motion due to respiration or other changes in the body; highly conformal dose distribution to the target volume, including a steep dose gradient to minimize radiation to surrounding healthy tissue; and image-guidance at the time of dose delivery for verification and adjustment of the target localization.
Related Links:
Xcision Medical Systems
Latest Nuclear Medicine News
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
- New Immuno-PET Imaging Technique Identifies Glioblastoma Patients Who Would Benefit from Immunotherapy
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreMRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more