Neurofeedback Shows Promise as Tinnitus Treatment
|
By MedImaging International staff writers Posted on 13 Dec 2017 |

Image: The standard approach to fMRI neurofeedback (Photo courtesy of the Radiological Society of North America).
Functional MRI (fMRI) demonstrates that neurofeedback training (NFT) has the potential to reduce the severity of tinnitus or even eliminate it, according to a new study.
Researchers at Wright State University (Fairborn, OH, USA) conducted a clinical study involving 18 healthy volunteers with normal hearing in order to determine the potential efficacy of self-regulation of the primary auditory cortex to treat tinnitus via real-time fMRI neurofeedback; volunteers underwent five fMRI-NFT sessions, composed of an initial simple auditory fMRI followed by two runs of auditory cortex fMRI-NFT. fMRI results were recorded using single-shot echoplanar imaging, an MRI technique that is sensitive to blood oxygen levels, providing an indirect measure of brain activity.
The simple auditory fMRI was taken in an MRI scanner, with the volunteers wearing noise-canceling earplugs. The run was comprised of six blocks containing a 20 second period of no auditory stimulation, followed by a 20 second period of white noise stimulation at 90 dB. Auditory cortex activity was then defined from a region using the activity during the preceding auditory run, and continuously updated during fMRI-NFT using a simple bar plot, accompanied by 90 dB white noise stimulation for the duration of the scan.
The participants then participated in the fMRI-NFT phase, receiving white noise through their earplugs while viewing activity in their primary auditory cortex as a bar on a screen. Each fMRI-NFT run contained eight blocks separated into a 30 second relax period followed by a 30 second lower period. Volunteers were instructed to watch the bar during the relax condition, and actively lower the bar by decreasing auditory cortex activity. Many participants focused on breathing, as it gave them a feeling of control, and diverted their attention away from sound. The study was presented at the annual meeting of the Radiological Society of North America (RSNA), held during November 2017 in Chicago (IL, USA).
“The idea is that in people with tinnitus there is an over-attention drawn to the auditory cortex, making it more active than in a healthy person,” said lead author and study presenter Matthew Sherwood, PhD, of the department of biomedical, industrial, and human factors engineering. “Our hope is that tinnitus sufferers could use neurofeedback to divert attention away from their tinnitus and possibly make it go away. Ultimately, we'd like take what we learned from MRI and develop a neurofeedback program that doesn't require MRI to use, such as an app or home-based therapy that could apply to tinnitus and other conditions.”
Tinnitus is the perception of sound within the human ear when no actual sound is present. It is not a disease, but a condition that can result from a wide range of underlying causes, including neurological damage, ear infections, oxidative stress, foreign objects in the ear, nasal allergies, wax build-up, and exposure to loud sounds. While it may be an accompaniment of sensorineural hearing loss or congenital hearing loss, or a side effect of certain medications, the most common cause is noise-induced hearing loss. Tinnitus is common, with about 20% of people between 55 and 65 years old report symptoms on a general health questionnaire, and 11.8% on more detailed tinnitus-specific questionnaires.
Related Links:
Wright State University
Researchers at Wright State University (Fairborn, OH, USA) conducted a clinical study involving 18 healthy volunteers with normal hearing in order to determine the potential efficacy of self-regulation of the primary auditory cortex to treat tinnitus via real-time fMRI neurofeedback; volunteers underwent five fMRI-NFT sessions, composed of an initial simple auditory fMRI followed by two runs of auditory cortex fMRI-NFT. fMRI results were recorded using single-shot echoplanar imaging, an MRI technique that is sensitive to blood oxygen levels, providing an indirect measure of brain activity.
The simple auditory fMRI was taken in an MRI scanner, with the volunteers wearing noise-canceling earplugs. The run was comprised of six blocks containing a 20 second period of no auditory stimulation, followed by a 20 second period of white noise stimulation at 90 dB. Auditory cortex activity was then defined from a region using the activity during the preceding auditory run, and continuously updated during fMRI-NFT using a simple bar plot, accompanied by 90 dB white noise stimulation for the duration of the scan.
The participants then participated in the fMRI-NFT phase, receiving white noise through their earplugs while viewing activity in their primary auditory cortex as a bar on a screen. Each fMRI-NFT run contained eight blocks separated into a 30 second relax period followed by a 30 second lower period. Volunteers were instructed to watch the bar during the relax condition, and actively lower the bar by decreasing auditory cortex activity. Many participants focused on breathing, as it gave them a feeling of control, and diverted their attention away from sound. The study was presented at the annual meeting of the Radiological Society of North America (RSNA), held during November 2017 in Chicago (IL, USA).
“The idea is that in people with tinnitus there is an over-attention drawn to the auditory cortex, making it more active than in a healthy person,” said lead author and study presenter Matthew Sherwood, PhD, of the department of biomedical, industrial, and human factors engineering. “Our hope is that tinnitus sufferers could use neurofeedback to divert attention away from their tinnitus and possibly make it go away. Ultimately, we'd like take what we learned from MRI and develop a neurofeedback program that doesn't require MRI to use, such as an app or home-based therapy that could apply to tinnitus and other conditions.”
Tinnitus is the perception of sound within the human ear when no actual sound is present. It is not a disease, but a condition that can result from a wide range of underlying causes, including neurological damage, ear infections, oxidative stress, foreign objects in the ear, nasal allergies, wax build-up, and exposure to loud sounds. While it may be an accompaniment of sensorineural hearing loss or congenital hearing loss, or a side effect of certain medications, the most common cause is noise-induced hearing loss. Tinnitus is common, with about 20% of people between 55 and 65 years old report symptoms on a general health questionnaire, and 11.8% on more detailed tinnitus-specific questionnaires.
Related Links:
Wright State University
Latest General/Advanced Imaging News
- 3D Scanning Approach Enables Ultra-Precise Brain Surgery
- AI Tool Improves Medical Imaging Process by 90%
- New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
- AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
- Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities
- Extending CT Imaging Detects Hidden Blood Clots in Stroke Patients
- Groundbreaking AI Model Accurately Segments Liver Tumors from CT Scans
- New CT-Based Indicator Helps Predict Life-Threatening Postpartum Bleeding Cases
- CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
- First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
- AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
- CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Channels
Radiography
view channel
X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
Detecting early-stage cancer or subtle changes deep inside tissues has long challenged conventional X-ray systems, which rely only on how structures absorb radiation. This limitation keeps many microstructural... Read more
AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
Osteoarthritis, a degenerative joint disease affecting over 500 million people worldwide, is the leading cause of disability among older adults. Current diagnostic tools allow doctors to assess damage... Read moreMRI
view channel
Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
Vascular dysfunction in the spinal cord contributes to multiple neurological conditions, including traumatic injuries and degenerative cervical myelopathy, where reduced blood flow can lead to progressive... Read more
AI-Assisted Model Enhances MRI Heart Scans
A cardiac MRI can reveal critical information about the heart’s function and any abnormalities, but traditional scans take 30 to 90 minutes and often suffer from poor image quality due to patient movement.... Read more
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







