Neurofeedback Shows Promise as Tinnitus Treatment
By MedImaging International staff writers Posted on 13 Dec 2017 |

Image: The standard approach to fMRI neurofeedback (Photo courtesy of the Radiological Society of North America).
Functional MRI (fMRI) demonstrates that neurofeedback training (NFT) has the potential to reduce the severity of tinnitus or even eliminate it, according to a new study.
Researchers at Wright State University (Fairborn, OH, USA) conducted a clinical study involving 18 healthy volunteers with normal hearing in order to determine the potential efficacy of self-regulation of the primary auditory cortex to treat tinnitus via real-time fMRI neurofeedback; volunteers underwent five fMRI-NFT sessions, composed of an initial simple auditory fMRI followed by two runs of auditory cortex fMRI-NFT. fMRI results were recorded using single-shot echoplanar imaging, an MRI technique that is sensitive to blood oxygen levels, providing an indirect measure of brain activity.
The simple auditory fMRI was taken in an MRI scanner, with the volunteers wearing noise-canceling earplugs. The run was comprised of six blocks containing a 20 second period of no auditory stimulation, followed by a 20 second period of white noise stimulation at 90 dB. Auditory cortex activity was then defined from a region using the activity during the preceding auditory run, and continuously updated during fMRI-NFT using a simple bar plot, accompanied by 90 dB white noise stimulation for the duration of the scan.
The participants then participated in the fMRI-NFT phase, receiving white noise through their earplugs while viewing activity in their primary auditory cortex as a bar on a screen. Each fMRI-NFT run contained eight blocks separated into a 30 second relax period followed by a 30 second lower period. Volunteers were instructed to watch the bar during the relax condition, and actively lower the bar by decreasing auditory cortex activity. Many participants focused on breathing, as it gave them a feeling of control, and diverted their attention away from sound. The study was presented at the annual meeting of the Radiological Society of North America (RSNA), held during November 2017 in Chicago (IL, USA).
“The idea is that in people with tinnitus there is an over-attention drawn to the auditory cortex, making it more active than in a healthy person,” said lead author and study presenter Matthew Sherwood, PhD, of the department of biomedical, industrial, and human factors engineering. “Our hope is that tinnitus sufferers could use neurofeedback to divert attention away from their tinnitus and possibly make it go away. Ultimately, we'd like take what we learned from MRI and develop a neurofeedback program that doesn't require MRI to use, such as an app or home-based therapy that could apply to tinnitus and other conditions.”
Tinnitus is the perception of sound within the human ear when no actual sound is present. It is not a disease, but a condition that can result from a wide range of underlying causes, including neurological damage, ear infections, oxidative stress, foreign objects in the ear, nasal allergies, wax build-up, and exposure to loud sounds. While it may be an accompaniment of sensorineural hearing loss or congenital hearing loss, or a side effect of certain medications, the most common cause is noise-induced hearing loss. Tinnitus is common, with about 20% of people between 55 and 65 years old report symptoms on a general health questionnaire, and 11.8% on more detailed tinnitus-specific questionnaires.
Related Links:
Wright State University
Researchers at Wright State University (Fairborn, OH, USA) conducted a clinical study involving 18 healthy volunteers with normal hearing in order to determine the potential efficacy of self-regulation of the primary auditory cortex to treat tinnitus via real-time fMRI neurofeedback; volunteers underwent five fMRI-NFT sessions, composed of an initial simple auditory fMRI followed by two runs of auditory cortex fMRI-NFT. fMRI results were recorded using single-shot echoplanar imaging, an MRI technique that is sensitive to blood oxygen levels, providing an indirect measure of brain activity.
The simple auditory fMRI was taken in an MRI scanner, with the volunteers wearing noise-canceling earplugs. The run was comprised of six blocks containing a 20 second period of no auditory stimulation, followed by a 20 second period of white noise stimulation at 90 dB. Auditory cortex activity was then defined from a region using the activity during the preceding auditory run, and continuously updated during fMRI-NFT using a simple bar plot, accompanied by 90 dB white noise stimulation for the duration of the scan.
The participants then participated in the fMRI-NFT phase, receiving white noise through their earplugs while viewing activity in their primary auditory cortex as a bar on a screen. Each fMRI-NFT run contained eight blocks separated into a 30 second relax period followed by a 30 second lower period. Volunteers were instructed to watch the bar during the relax condition, and actively lower the bar by decreasing auditory cortex activity. Many participants focused on breathing, as it gave them a feeling of control, and diverted their attention away from sound. The study was presented at the annual meeting of the Radiological Society of North America (RSNA), held during November 2017 in Chicago (IL, USA).
“The idea is that in people with tinnitus there is an over-attention drawn to the auditory cortex, making it more active than in a healthy person,” said lead author and study presenter Matthew Sherwood, PhD, of the department of biomedical, industrial, and human factors engineering. “Our hope is that tinnitus sufferers could use neurofeedback to divert attention away from their tinnitus and possibly make it go away. Ultimately, we'd like take what we learned from MRI and develop a neurofeedback program that doesn't require MRI to use, such as an app or home-based therapy that could apply to tinnitus and other conditions.”
Tinnitus is the perception of sound within the human ear when no actual sound is present. It is not a disease, but a condition that can result from a wide range of underlying causes, including neurological damage, ear infections, oxidative stress, foreign objects in the ear, nasal allergies, wax build-up, and exposure to loud sounds. While it may be an accompaniment of sensorineural hearing loss or congenital hearing loss, or a side effect of certain medications, the most common cause is noise-induced hearing loss. Tinnitus is common, with about 20% of people between 55 and 65 years old report symptoms on a general health questionnaire, and 11.8% on more detailed tinnitus-specific questionnaires.
Related Links:
Wright State University
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more