New Retinal Imaging Technique Could Revolutionize Eye Care
By MedImaging International staff writers Posted on 18 Jan 2017 |

Image: Ganglion cell layer neurons in the temporal retina from two different human eyes (Photo courtesy of the University of Rochester).
A new study describes a non-invasive method to image individual cells in the human retina, which are implicated in the vision loss associated with glaucoma and other diseases.
Researchers at the University of Rochester, the University of Pittsburgh School of Medicine, and other institutions modified adaptive optics scanning light ophthalmoscopy (AOSLO) in order to successfully image somas of neurons within the retinal ganglion cell (RGC) layer in both monkeys and humans. They also showed that the same technique, when applied to the photoreceptor layer, could resolve ambiguity about cone survival in age-related macular degeneration (AMD).
The researchers reported that while currently, the human images did not match the quality of monkey images for safety reasons involving light intensity, the capability to noninvasively image RGC layer neurons in the living eye may one day allow for a better understanding of diseases such as glaucoma, and accelerate the development of therapeutic strategies that aim to protect these cells. This method may also prove useful for imaging other structures, such as neurons in the brain. The study was published on December 6, 2016, in Proceedings of the National Academy of Sciences (PNAS).
“Retinal ganglion cells are the primary output neurons of the retina that process visual information and transmit it to the brain. The death of these cells causes vision loss in glaucoma, the second leading cause of blindness worldwide,” concluded lead author Ethan Rossi, PhD, assistant professor of ophthalmology at Pitt. “The ability to image these cells in the living eye could accelerate our understanding of their role in normal vision and provide a diagnostic tool for evaluating new therapies for retinal disease.”
Although imaging of the living retina with AOSLO provides access to individual photoreceptors, retinal pigment epithelial cells, blood cells in the retinal vasculature, and RGCs, have proven much more challenging to image. The near transparency of inner retinal cells is advantageous for vision, as light must pass through them to reach the photoreceptors, but it has prevented them from being directly imaged in vivo. As a result, glaucoma is currently diagnosed by assessing the thickness of the nerve fibers projecting from the RGCs to the brain.
Researchers at the University of Rochester, the University of Pittsburgh School of Medicine, and other institutions modified adaptive optics scanning light ophthalmoscopy (AOSLO) in order to successfully image somas of neurons within the retinal ganglion cell (RGC) layer in both monkeys and humans. They also showed that the same technique, when applied to the photoreceptor layer, could resolve ambiguity about cone survival in age-related macular degeneration (AMD).
The researchers reported that while currently, the human images did not match the quality of monkey images for safety reasons involving light intensity, the capability to noninvasively image RGC layer neurons in the living eye may one day allow for a better understanding of diseases such as glaucoma, and accelerate the development of therapeutic strategies that aim to protect these cells. This method may also prove useful for imaging other structures, such as neurons in the brain. The study was published on December 6, 2016, in Proceedings of the National Academy of Sciences (PNAS).
“Retinal ganglion cells are the primary output neurons of the retina that process visual information and transmit it to the brain. The death of these cells causes vision loss in glaucoma, the second leading cause of blindness worldwide,” concluded lead author Ethan Rossi, PhD, assistant professor of ophthalmology at Pitt. “The ability to image these cells in the living eye could accelerate our understanding of their role in normal vision and provide a diagnostic tool for evaluating new therapies for retinal disease.”
Although imaging of the living retina with AOSLO provides access to individual photoreceptors, retinal pigment epithelial cells, blood cells in the retinal vasculature, and RGCs, have proven much more challenging to image. The near transparency of inner retinal cells is advantageous for vision, as light must pass through them to reach the photoreceptors, but it has prevented them from being directly imaged in vivo. As a result, glaucoma is currently diagnosed by assessing the thickness of the nerve fibers projecting from the RGCs to the brain.
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more