Functional Imaging Technique Measures Brain Resting State
By MedImaging International staff writers Posted on 18 Jan 2016 |
A new study suggests that functional magnetic resonance imaging (fMRI) could be a cost-effective alternative for estimating relative levels of activity in a cerebral metabolic map.
Researchers at Western University (WU; London, Canada) and the University Hospital of Liège (Belgium) conducted a study to gauge the possibility of using fMRI instead of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for generating the metabolic maps that are used to asses changes in brain activity in clinical applications, such as during the study of severe brain injury and disorders of consciousness.
To do so, the researchers first extracted resting state fMRI functional connectivity maps using independent component analysis, and combined only components of neuronal origin. They then compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients, and in four locked-in patients.
The results showed a significant similarity for healthy controls and for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps, with conjunction analysis showing decreased frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients, which are known to be conscious, also produced consistent neuronal maps with healthy controls. The study was published on December 29, 2015, in Brain and Behavior.
“Many hospitals in developing countries have access to functional MRI technology or FDG-PET, but not both. By developing new fMRI techniques, hospitals that already have the expensive scanning equipment or wish to purchase a unit effectively get 'more bang for their buck’,” said lead author Andrea Soddu, PhD, of the WU department of physics and astronomy. “If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET.”
PET scans are widely used to diagnose and track a variety of diseases, including cancer, because they show how organs and tissues function in the body, in contrast to MRI or CT scans, which mostly show anatomy. Using radioactive tracers that produce a signal from within the body, PET scanners produce a 3D image that is constructed by computers using sophisticated mathematical techniques.
Related Links:
Western University
University Hospital of Liège
Researchers at Western University (WU; London, Canada) and the University Hospital of Liège (Belgium) conducted a study to gauge the possibility of using fMRI instead of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for generating the metabolic maps that are used to asses changes in brain activity in clinical applications, such as during the study of severe brain injury and disorders of consciousness.
To do so, the researchers first extracted resting state fMRI functional connectivity maps using independent component analysis, and combined only components of neuronal origin. They then compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients, and in four locked-in patients.
The results showed a significant similarity for healthy controls and for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps, with conjunction analysis showing decreased frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients, which are known to be conscious, also produced consistent neuronal maps with healthy controls. The study was published on December 29, 2015, in Brain and Behavior.
“Many hospitals in developing countries have access to functional MRI technology or FDG-PET, but not both. By developing new fMRI techniques, hospitals that already have the expensive scanning equipment or wish to purchase a unit effectively get 'more bang for their buck’,” said lead author Andrea Soddu, PhD, of the WU department of physics and astronomy. “If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET.”
PET scans are widely used to diagnose and track a variety of diseases, including cancer, because they show how organs and tissues function in the body, in contrast to MRI or CT scans, which mostly show anatomy. Using radioactive tracers that produce a signal from within the body, PET scanners produce a 3D image that is constructed by computers using sophisticated mathematical techniques.
Related Links:
Western University
University Hospital of Liège
Latest Nuclear Medicine News
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read more
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more