PET Imaging Used to Monitor Beta Cell Status in Type 1 Diabetes
By MedImaging International staff writers Posted on 02 Jul 2014 |
Type 1 diabetes (T1D) is a disorder that involves the progressive loss of insulin-producing beta cells, but calculating that loss has continued to mystify researchers, at least until the present. Swedish researchers are now using a radiotracer or marker and positron emission tomography (PET) scanning as a noninvasive technique to track changes in how many active beta cells are contained in an individual.
Dr. Olle Korsgren and his colleagues at the University of Uppsala (Sweden) used the imaging technology in a clinical study of 10 individuals with T1D and nine without the disease to compare the amount of beta cells in each group. They discovered that the amount or volume of active beta cells was substantially lower in the group with T1D compared to those without T1D, and the reduction was close to what researchers predicted given a loss of the majority of beta cells in the pancreas in T1D. In another study of people with type 2 diabetes, the researchers were able to use the technique to identify a progressive loss of the amount of beta cells in one person imaged repeatedly over a two-year period.
The PET imaging technique is based on recently discovered biologic processes that occur in the beta cell. One specific process in the beta cell causes the cells to take up a typically used imaging radiotracer given at the start of the procedure. The amount of the tracer that is deposited in the pancreas mostly depends on how many beta cells are alive and active. The PET scan can then detect the amount of radiotracer in the pancreas as an approximate measure of the overall amount or volume of beta cells present. The procedure takes only a few hours to complete.
This imaging technique will most likely have no role in diagnosing T1D because of the large variability of the number of beta cells among people with T1D and even among those without T1D. However, it could become a major approach for tracking the loss of beta cells in a person at risk of T1D and as a faster and more precise way to evaluate the benefit of novel beta cell survival and regeneration therapies. More human validation studies of this technique are needed before it can be used routinely.
Related Links:
University of Uppsala
Dr. Olle Korsgren and his colleagues at the University of Uppsala (Sweden) used the imaging technology in a clinical study of 10 individuals with T1D and nine without the disease to compare the amount of beta cells in each group. They discovered that the amount or volume of active beta cells was substantially lower in the group with T1D compared to those without T1D, and the reduction was close to what researchers predicted given a loss of the majority of beta cells in the pancreas in T1D. In another study of people with type 2 diabetes, the researchers were able to use the technique to identify a progressive loss of the amount of beta cells in one person imaged repeatedly over a two-year period.
The PET imaging technique is based on recently discovered biologic processes that occur in the beta cell. One specific process in the beta cell causes the cells to take up a typically used imaging radiotracer given at the start of the procedure. The amount of the tracer that is deposited in the pancreas mostly depends on how many beta cells are alive and active. The PET scan can then detect the amount of radiotracer in the pancreas as an approximate measure of the overall amount or volume of beta cells present. The procedure takes only a few hours to complete.
This imaging technique will most likely have no role in diagnosing T1D because of the large variability of the number of beta cells among people with T1D and even among those without T1D. However, it could become a major approach for tracking the loss of beta cells in a person at risk of T1D and as a faster and more precise way to evaluate the benefit of novel beta cell survival and regeneration therapies. More human validation studies of this technique are needed before it can be used routinely.
Related Links:
University of Uppsala
Latest Nuclear Medicine News
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreMRI
view channel
Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
Aortic stenosis is a common and potentially life-threatening heart condition. It occurs when the aortic valve, which regulates blood flow from the heart to the rest of the body, becomes stiff and narrow.... Read more
New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
Heart disease remains one of the leading causes of death worldwide. Individuals with conditions such as diabetes or obesity often experience accelerated aging of their hearts, sometimes by decades.... Read more
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreGeneral/Advanced Imaging
view channel
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read more
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more