Imaging Probe Allows Noninvasive Detection of Heart-Valve Infection
By MedImaging International staff writers Posted on 29 Aug 2011 |
An innovative imaging probe may make it possible to diagnose accurately a dangerous infection of the heart valves. The investigators revealed how the presence of Staphylococcus aureus-associated endocarditis in a mouse model was revealed by positron emission tomography (PET) imaging with a radiolabeled version of a protein involved in a process that typically conceals infecting bacteria from the immune system.
“Our probe was able to sense whether S. aureus was present in abnormal growths that hinder the normal function of heart valves,” said Matthias Nahrendorf, MD, PhD, of the Massachusetts General Hospital (MGH; Boston, MA, USA) Center for Systems Biology, a co-lead author of the study, which was published August 2011 in advance online edition of the journal Nature Medicine. “It has been very difficult to identify the bacteria involved in endocarditis, but a precise diagnosis is important to steering well-adjusted antibiotic therapy.”
An infection of the tissue lining the heart valves, endocarditis is characterized by growths called vegetations comprised of clotting components such as platelets and fibrin along with infecting microorganisms. Endocarditis caused by S. aureus is the most dangerous, with a mortality rate of from 25 to nearly 50%, but diagnosis can be difficult since symptoms such as fever and heart murmur are vague and blood tests may not detect the involved bacteria. Without appropriate antibiotic therapy, S. aureus endocarditis can progress rapidly, damaging or destroying heart valves.
S. aureus bacteria initiate the growth of vegetations by secreting staphylocoagulase, an enzyme that sets off the clotting cascade. This process involves a protein called prothrombin, which is part of a pathway leading to the deposition of fibrin, a primary component of blood clots. The clotting process enlarges the vegetation, anchors it to the heart valve, and serves to conceal the bacteria from immune cells in the bloodstream.
To develop an imaging-based approach to diagnosing S. aureus endocarditis, the MGH investigators first investigated the molecular process by which staphylocoagulase sets off the clotting cascade, finding that one staphylocoagulase molecule interacts with at least four molecules of fibrin or its predecessor molecule fibrinogen in a complex that binds to a growing vegetation. Because prothrombin is an essential intermediary in the staphylocoagulase/fibrin interaction, the researchers investigated whether labeled versions of prothrombin could accurately detect S. aureus endocarditis in mice.
After initial experiments confirmed that an optical imaging technology called fluorescence molecular tomography -computed tomography (FMT-CT) could detect a fluorescence-labeled version of prothombin deposited into S. aureus-induced vegetations, the researchers showed that a radiolabeled version of prothombin enabled the detection of S. aureus vegetations with combined PET-CT imaging, an approach that could be used in human patients after additional development and FDA approval.
“An approach like this could help clinicians detect the presence of endocarditis, determine its severity and whether it is caused by S. aureus, and track the effectiveness of antibiotics or other treatments,” said Dr. Nahrendorf, also a co-corresponding author of the Nature Medicine article and an assistant professor of radiology at Harvard Medical School (Boston, MA, USA). “We are working to improve the PET reporter probe with streamlined chemistry and a more mainstream PET isotope to make it a better candidate for eventual testing in patients.”
Related Links:
Massachusetts General Hospital
“Our probe was able to sense whether S. aureus was present in abnormal growths that hinder the normal function of heart valves,” said Matthias Nahrendorf, MD, PhD, of the Massachusetts General Hospital (MGH; Boston, MA, USA) Center for Systems Biology, a co-lead author of the study, which was published August 2011 in advance online edition of the journal Nature Medicine. “It has been very difficult to identify the bacteria involved in endocarditis, but a precise diagnosis is important to steering well-adjusted antibiotic therapy.”
An infection of the tissue lining the heart valves, endocarditis is characterized by growths called vegetations comprised of clotting components such as platelets and fibrin along with infecting microorganisms. Endocarditis caused by S. aureus is the most dangerous, with a mortality rate of from 25 to nearly 50%, but diagnosis can be difficult since symptoms such as fever and heart murmur are vague and blood tests may not detect the involved bacteria. Without appropriate antibiotic therapy, S. aureus endocarditis can progress rapidly, damaging or destroying heart valves.
S. aureus bacteria initiate the growth of vegetations by secreting staphylocoagulase, an enzyme that sets off the clotting cascade. This process involves a protein called prothrombin, which is part of a pathway leading to the deposition of fibrin, a primary component of blood clots. The clotting process enlarges the vegetation, anchors it to the heart valve, and serves to conceal the bacteria from immune cells in the bloodstream.
To develop an imaging-based approach to diagnosing S. aureus endocarditis, the MGH investigators first investigated the molecular process by which staphylocoagulase sets off the clotting cascade, finding that one staphylocoagulase molecule interacts with at least four molecules of fibrin or its predecessor molecule fibrinogen in a complex that binds to a growing vegetation. Because prothrombin is an essential intermediary in the staphylocoagulase/fibrin interaction, the researchers investigated whether labeled versions of prothrombin could accurately detect S. aureus endocarditis in mice.
After initial experiments confirmed that an optical imaging technology called fluorescence molecular tomography -computed tomography (FMT-CT) could detect a fluorescence-labeled version of prothombin deposited into S. aureus-induced vegetations, the researchers showed that a radiolabeled version of prothombin enabled the detection of S. aureus vegetations with combined PET-CT imaging, an approach that could be used in human patients after additional development and FDA approval.
“An approach like this could help clinicians detect the presence of endocarditis, determine its severity and whether it is caused by S. aureus, and track the effectiveness of antibiotics or other treatments,” said Dr. Nahrendorf, also a co-corresponding author of the Nature Medicine article and an assistant professor of radiology at Harvard Medical School (Boston, MA, USA). “We are working to improve the PET reporter probe with streamlined chemistry and a more mainstream PET isotope to make it a better candidate for eventual testing in patients.”
Related Links:
Massachusetts General Hospital
Latest Nuclear Medicine News
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreMRI
view channel
Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
Aortic stenosis is a common and potentially life-threatening heart condition. It occurs when the aortic valve, which regulates blood flow from the heart to the rest of the body, becomes stiff and narrow.... Read more
New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
Heart disease remains one of the leading causes of death worldwide. Individuals with conditions such as diabetes or obesity often experience accelerated aging of their hearts, sometimes by decades.... Read more
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreGeneral/Advanced Imaging
view channel
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read more
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more