HyperImage Project Advances Research on Hybrid PET/MR Scanner Technology
By MedImaging International staff writers Posted on 19 Nov 2009 |
An imaging project has achieved a major milestone in its plan to create a new medical imaging technique called hybrid PET/MR. This new technique is based on the simultaneous acquisition of time-of-flight positron emission tomography (PET) and magnetic resonance (MR) images.
The leader of the European Union-funded HYPERImage research project is Philips Healthcare (Best, The Netherlands). The project involves eight partners from six European countries and has a total budget of around EUR 7 million. The ultimate goals of the project are to advance the accuracy of diagnostic imaging in cardiology and oncology and open up new fields in therapy planning, guidance, and response monitoring.
A hybrid PET/MR scanner could simultaneously deliver the anatomic and functional information achievable using state-of-the-art MR scanners (e.g., soft tissue contrast and physiologic processes in blood vessels) and the molecular imaging data provided by PET. As a result, it would combine the best of both worlds, which could ultimately help to pinpoint and characterize disease sites within the body more accurately than is currently possible.
For a hybrid scanner that offers simultaneous PET and MR image acquisition, two basic problems need to be solved: the development of MR-compatible PET detectors and a method of accounting for PET attenuation (the scattering of high-energy gamma rays generated by the PET tracers by parts of the human body).
The milestone that the HYPERImage team has reached is the development of a functional gamma-ray detector that meets the performance requirements of the latest time-of-flight PET scanners. The new gamma-ray detectors have been designed to be compatible with the strong static and dynamic magnetic fields that would be present in a combined PET/MR scanner. Furthermore, the team has achieved major progress with respect to MRI-based static and dynamic PET attenuation correction. Details of these results were presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, October 25-31, 2--9, in Orlando, FL, USA.
"Understanding the molecular mechanisms associated with cardiovascular disease and cancer, and the development of technologies focused on the early detection of these disease processes are the two main challenges of biomedical research,” said Prof. Dr. Valentin Fuster, director of the National Center for Cardiovascular Research in Madrid, Spain (one of Europe's leading research centers in cardiology) and the Cardiovascular Institute at the Mount Sinai Medical Center in New York, NY, USA. "I am convinced that the realization of a PET/MR technology platform will significantly help to improve the precision and the moment at which disease is diagnosed, two critical parameters for the successful treatment of many diseases.”
"The HYPERImage team's combined expertise in semiconductor physics, signal processing, and medical scanner design, together with its expert clinical knowledge, have moved the project an important step forward in the development of a new imaging tool that is intended to help clinicians diagnose and treat some of the world's most prevalent killer diseases, such as breast cancer,” said Henk van Houten, senior vice president of Philips Research and head of Philips' healthcare research program. "I am proud to say that proof-of-concept of an MR-compatible PET detector took the team less than 1.5 years to achieve. It clearly demonstrates that good collaborations lead to very fast progress.”
The HYPERImage consortium comprises three universities (King's College London, UK; Universität Heidelberg, Germany; and Universiteit Ghent-Institute for Broadband Technology, Belgium), three research foundations (Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Fondazione Bruno Kessler, Tento, Italy; and The Netherlands Cancer Institute, Amsterdam, The Netherlands), a university medical center (Uniklinikum Hamburg-Eppendorf, Germany) and the industrial partner (Philips, The Netherlands and Germany).
EU funding for the HYPERImage project, which is being provided as part of the EU's 7th Framework Program, amounts to around EUR 5 million. The consortium partners will provide an additional EUR 2.3 million. The project started in 2008 and will run for three years. Philips' leadership of the consortium is based on its
experience in designing and developing medical scanners.
Related Links:
Philips Healthcare
The leader of the European Union-funded HYPERImage research project is Philips Healthcare (Best, The Netherlands). The project involves eight partners from six European countries and has a total budget of around EUR 7 million. The ultimate goals of the project are to advance the accuracy of diagnostic imaging in cardiology and oncology and open up new fields in therapy planning, guidance, and response monitoring.
A hybrid PET/MR scanner could simultaneously deliver the anatomic and functional information achievable using state-of-the-art MR scanners (e.g., soft tissue contrast and physiologic processes in blood vessels) and the molecular imaging data provided by PET. As a result, it would combine the best of both worlds, which could ultimately help to pinpoint and characterize disease sites within the body more accurately than is currently possible.
For a hybrid scanner that offers simultaneous PET and MR image acquisition, two basic problems need to be solved: the development of MR-compatible PET detectors and a method of accounting for PET attenuation (the scattering of high-energy gamma rays generated by the PET tracers by parts of the human body).
The milestone that the HYPERImage team has reached is the development of a functional gamma-ray detector that meets the performance requirements of the latest time-of-flight PET scanners. The new gamma-ray detectors have been designed to be compatible with the strong static and dynamic magnetic fields that would be present in a combined PET/MR scanner. Furthermore, the team has achieved major progress with respect to MRI-based static and dynamic PET attenuation correction. Details of these results were presented at the IEEE Nuclear Science Symposium and Medical Imaging Conference, October 25-31, 2--9, in Orlando, FL, USA.
"Understanding the molecular mechanisms associated with cardiovascular disease and cancer, and the development of technologies focused on the early detection of these disease processes are the two main challenges of biomedical research,” said Prof. Dr. Valentin Fuster, director of the National Center for Cardiovascular Research in Madrid, Spain (one of Europe's leading research centers in cardiology) and the Cardiovascular Institute at the Mount Sinai Medical Center in New York, NY, USA. "I am convinced that the realization of a PET/MR technology platform will significantly help to improve the precision and the moment at which disease is diagnosed, two critical parameters for the successful treatment of many diseases.”
"The HYPERImage team's combined expertise in semiconductor physics, signal processing, and medical scanner design, together with its expert clinical knowledge, have moved the project an important step forward in the development of a new imaging tool that is intended to help clinicians diagnose and treat some of the world's most prevalent killer diseases, such as breast cancer,” said Henk van Houten, senior vice president of Philips Research and head of Philips' healthcare research program. "I am proud to say that proof-of-concept of an MR-compatible PET detector took the team less than 1.5 years to achieve. It clearly demonstrates that good collaborations lead to very fast progress.”
The HYPERImage consortium comprises three universities (King's College London, UK; Universität Heidelberg, Germany; and Universiteit Ghent-Institute for Broadband Technology, Belgium), three research foundations (Fundación Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain; Fondazione Bruno Kessler, Tento, Italy; and The Netherlands Cancer Institute, Amsterdam, The Netherlands), a university medical center (Uniklinikum Hamburg-Eppendorf, Germany) and the industrial partner (Philips, The Netherlands and Germany).
EU funding for the HYPERImage project, which is being provided as part of the EU's 7th Framework Program, amounts to around EUR 5 million. The consortium partners will provide an additional EUR 2.3 million. The project started in 2008 and will run for three years. Philips' leadership of the consortium is based on its
experience in designing and developing medical scanners.
Related Links:
Philips Healthcare
Latest Nuclear Medicine News
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreMRI
view channel
Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
Aortic stenosis is a common and potentially life-threatening heart condition. It occurs when the aortic valve, which regulates blood flow from the heart to the rest of the body, becomes stiff and narrow.... Read more
New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
Heart disease remains one of the leading causes of death worldwide. Individuals with conditions such as diabetes or obesity often experience accelerated aging of their hearts, sometimes by decades.... Read more
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreGeneral/Advanced Imaging
view channel
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read more
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more