Brain Difference in Psychopaths Identified by DT-MRI Tractography
By MedImaging International staff writers Posted on 25 Aug 2009 |
British researchers have found differences in the brain that may provide a biologic explanation for psychopathy.
The study investigated the brain biology of psychopaths with convictions that included attempted murder, manslaughter, multiple rapes with strangulation, and false imprisonment. Using a powerful imaging technique, the researchers have highlighted biologic differences in the brain that may underpin these types of behavior and provide a more comprehensive understanding of criminal psychopathy.
The study was conducted by Prof. Declan Murphy and colleagues Dr. Michael Craig and Dr. Marco Catani from the Institute of Psychiatry at King's College London (UK). The results of their study were published in the June 9, 2009, issue of the journal Molecular Psychiatry. Dr. Michael Craig said, "If replicated by larger studies the significance of these findings cannot be underestimated. The suggestion of a clear structural deficit in the brains of psychopaths has profound implications for clinicians, research scientists and the criminal justice system.”
While psychopathy is strongly associated with serious criminal behavior (e.g., rape and murder) and repeat offending, the biologic basis of psychopathy remains poorly understood. Moreover, some investigators stress mostly social reasons to explain antisocial behaviors. To date, nobody has investigated the "connectivity” between the specific brain regions implicated in psychopathy.
Earlier studies had suggested that dysfunction of specific brain regions might underpin psychopathy. Such areas of the brain were identified as the amygdale, i.e., the area associated with emotions, fear, and aggression, and the orbitofrontal cortex (OFC), the region that handles with decision-making. There is a white matter tract that connects the amygdala and OFC, which is called the uncinate fasciculus (UF). However, no one had ever studied the UF in psychopaths. The investigators from King's used an imaging method called in vivo diffusion tensor magnetic resonance imaging (DT-MRI) tractography to analyze the UF in psychopaths.
The investigators found a significant reduction in the integrity of the small particles that make up the structure of the UF of psychopaths, compared to control groups of people with the same age and intelligence quotient (IQ). In addition, the level of abnormality was significantly related to the degree of psychopathy. These results suggest that psychopaths have biologic differences in the brain that may help to explain their offending behaviors.
Dr Craig added, "This study is part of an ongoing program of research into the biological basis of criminal psychopathy. It highlights that exciting developments in brain imaging such as DT-MRI now offer neuroscientists the potential to move towards a more coherent understanding of the possible brain networks that underlie psychopathy, and potentially towards treatments for this mental disorder.”
Related Links:
Institute of Psychiatry at King's College London
The study investigated the brain biology of psychopaths with convictions that included attempted murder, manslaughter, multiple rapes with strangulation, and false imprisonment. Using a powerful imaging technique, the researchers have highlighted biologic differences in the brain that may underpin these types of behavior and provide a more comprehensive understanding of criminal psychopathy.
The study was conducted by Prof. Declan Murphy and colleagues Dr. Michael Craig and Dr. Marco Catani from the Institute of Psychiatry at King's College London (UK). The results of their study were published in the June 9, 2009, issue of the journal Molecular Psychiatry. Dr. Michael Craig said, "If replicated by larger studies the significance of these findings cannot be underestimated. The suggestion of a clear structural deficit in the brains of psychopaths has profound implications for clinicians, research scientists and the criminal justice system.”
While psychopathy is strongly associated with serious criminal behavior (e.g., rape and murder) and repeat offending, the biologic basis of psychopathy remains poorly understood. Moreover, some investigators stress mostly social reasons to explain antisocial behaviors. To date, nobody has investigated the "connectivity” between the specific brain regions implicated in psychopathy.
Earlier studies had suggested that dysfunction of specific brain regions might underpin psychopathy. Such areas of the brain were identified as the amygdale, i.e., the area associated with emotions, fear, and aggression, and the orbitofrontal cortex (OFC), the region that handles with decision-making. There is a white matter tract that connects the amygdala and OFC, which is called the uncinate fasciculus (UF). However, no one had ever studied the UF in psychopaths. The investigators from King's used an imaging method called in vivo diffusion tensor magnetic resonance imaging (DT-MRI) tractography to analyze the UF in psychopaths.
The investigators found a significant reduction in the integrity of the small particles that make up the structure of the UF of psychopaths, compared to control groups of people with the same age and intelligence quotient (IQ). In addition, the level of abnormality was significantly related to the degree of psychopathy. These results suggest that psychopaths have biologic differences in the brain that may help to explain their offending behaviors.
Dr Craig added, "This study is part of an ongoing program of research into the biological basis of criminal psychopathy. It highlights that exciting developments in brain imaging such as DT-MRI now offer neuroscientists the potential to move towards a more coherent understanding of the possible brain networks that underlie psychopathy, and potentially towards treatments for this mental disorder.”
Related Links:
Institute of Psychiatry at King's College London
Latest MRI News
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel
Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
Clinical ultrasound, commonly used in pregnancy scans, provides real-time images of body structures. It is one of the most widely used imaging techniques in medicine, but until recently, it had little... Read more
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more