PET Images of Early-Stage Neuroblastoma Can Provide Critical Data
By MedImaging International staff writers Posted on 18 Aug 2009 |

Image: A microscopic view of a typical neuroblastoma with rosette formation (Photo courtesy of the National Cancer Institute).
A new study shows that positron emission tomography (PET) is an important tool for depicting the extent of neuroblastoma in some patients, particularly for those in the early stages of the disease.
Neuroblastoma accounts for 6-10% of all childhood cancers in the United States alone and 15% of cancer deaths in children. Accurately identifying where in the body the disease is located and whether it is spreading is critical for choosing appropriate types of treatment, which can include surgery, chemotherapy, radiation and--in the most advanced cases--a combination of all of these treatments along with bone marrow transplant or investigational therapies.
In recent years, 123I-metaiodobenzylguanidine (MIBG) has been the main functional imaging agent used to assess the disease. Fluorodeoxyglucose (FDG)- PET imaging of neuroblastoma is increasing, but questions remain regarding when and in which patients FDG-PET imaging is most useful.
"Functional imaging plays an important role in assessing neuroblastoma, from initially diagnosing and staging the disease to determining whether patients are responding to treatment or whether the disease has recurred,” said Susan E. Sharp, M.D., assistant professor of clinical radiology at Cincinnati Children's Hospital Medical Center (OH, USA) and lead author of the study, which was August 2009 issue of The Journal of Nuclear Medicine. "Our study found that while MIBG remains the front-line imaging tool for neuroblastoma, FDG-PET imaging can benefit some patients, especially those with early-stage disease.”
The study also found that FDG-PET might also be useful in imaging neuroblastoma tumors that do not readily absorb MIBG. In these cases, imaging with MIBG alone may not reveal some malignant lesions in the body.
Neuroblastoma--a form of cancer that starts in certain types of very primitive developing nerve cells found in an embryo or fetus--occurs most frequently in infants and young children. The cancer most often originates on the adrenal glands--the triangular-shaped glands above the kidneys. Neuroblastoma often spreads to other parts of the body before any symptoms are apparent.
Patients with the disease are classified as low-, medium- or high-risk based on a combination of clinical staging of the disease and certain biologic and genetic characteristics, such as the age of the patient, extent of disease spread, microscopic appearance and genetic factors.
Treatment for each of the risk categories is very different. If the cancer is limited to one part of the body, it is often curable with surgery, sometimes with the addition of chemotherapy. However, long-term survival for children older than 18 months of age with advanced disease is poor despite aggressive treatments that include a combination of chemotherapy, surgery, bone marrow transplant, and investigational therapies.
In the study, a total of 113 paired MIBG scans and FDG-PET scans in 60 patients with neuroblastoma at two major pediatric cancer institutions were reviewed. PET was used in conjunction with localization computed tomography (CT) scans, and MIBG planar and single photon emission computed tomography (SPECT) imaging were combined. The study shows that for stage I and stage II neuroblastoma patients, FDG-PET depicted more primary or residual neuroblastoma, although MIBG imaging may be needed to exclude higher-stage disease that has spread to the bone or bone marrow. MIBG is superior in evaluating stage IV neuroblastoma, primarily because it can detect and follow the response to treatment of tumor in the bone or bone marrow more accurately.
Related Links:
Cincinnati Children's Hospital Medical Center
Neuroblastoma accounts for 6-10% of all childhood cancers in the United States alone and 15% of cancer deaths in children. Accurately identifying where in the body the disease is located and whether it is spreading is critical for choosing appropriate types of treatment, which can include surgery, chemotherapy, radiation and--in the most advanced cases--a combination of all of these treatments along with bone marrow transplant or investigational therapies.
In recent years, 123I-metaiodobenzylguanidine (MIBG) has been the main functional imaging agent used to assess the disease. Fluorodeoxyglucose (FDG)- PET imaging of neuroblastoma is increasing, but questions remain regarding when and in which patients FDG-PET imaging is most useful.
"Functional imaging plays an important role in assessing neuroblastoma, from initially diagnosing and staging the disease to determining whether patients are responding to treatment or whether the disease has recurred,” said Susan E. Sharp, M.D., assistant professor of clinical radiology at Cincinnati Children's Hospital Medical Center (OH, USA) and lead author of the study, which was August 2009 issue of The Journal of Nuclear Medicine. "Our study found that while MIBG remains the front-line imaging tool for neuroblastoma, FDG-PET imaging can benefit some patients, especially those with early-stage disease.”
The study also found that FDG-PET might also be useful in imaging neuroblastoma tumors that do not readily absorb MIBG. In these cases, imaging with MIBG alone may not reveal some malignant lesions in the body.
Neuroblastoma--a form of cancer that starts in certain types of very primitive developing nerve cells found in an embryo or fetus--occurs most frequently in infants and young children. The cancer most often originates on the adrenal glands--the triangular-shaped glands above the kidneys. Neuroblastoma often spreads to other parts of the body before any symptoms are apparent.
Patients with the disease are classified as low-, medium- or high-risk based on a combination of clinical staging of the disease and certain biologic and genetic characteristics, such as the age of the patient, extent of disease spread, microscopic appearance and genetic factors.
Treatment for each of the risk categories is very different. If the cancer is limited to one part of the body, it is often curable with surgery, sometimes with the addition of chemotherapy. However, long-term survival for children older than 18 months of age with advanced disease is poor despite aggressive treatments that include a combination of chemotherapy, surgery, bone marrow transplant, and investigational therapies.
In the study, a total of 113 paired MIBG scans and FDG-PET scans in 60 patients with neuroblastoma at two major pediatric cancer institutions were reviewed. PET was used in conjunction with localization computed tomography (CT) scans, and MIBG planar and single photon emission computed tomography (SPECT) imaging were combined. The study shows that for stage I and stage II neuroblastoma patients, FDG-PET depicted more primary or residual neuroblastoma, although MIBG imaging may be needed to exclude higher-stage disease that has spread to the bone or bone marrow. MIBG is superior in evaluating stage IV neuroblastoma, primarily because it can detect and follow the response to treatment of tumor in the bone or bone marrow more accurately.
Related Links:
Cincinnati Children's Hospital Medical Center
Latest Nuclear Medicine News
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
- New Imaging Agent to Drive Step-Change for Brain Cancer Imaging
- Portable PET Scanner to Detect Earliest Stages of Alzheimer’s Disease
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreMRI
view channel
Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
Aortic stenosis is a common and potentially life-threatening heart condition. It occurs when the aortic valve, which regulates blood flow from the heart to the rest of the body, becomes stiff and narrow.... Read more
New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
Heart disease remains one of the leading causes of death worldwide. Individuals with conditions such as diabetes or obesity often experience accelerated aging of their hearts, sometimes by decades.... Read more
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreGeneral/Advanced Imaging
view channel
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read more
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more