Microscopic Deep Brain Imaging Detects Green Fluorescent Protein Molecule
By MedImaging International staff writers Posted on 10 Feb 2009 |
Scientists have demonstrated microscopic, real-time imaging of the deepest regions of the brain in a freely moving mouse, using it to analyze the expression of green fluorescent protein (GFP), the protein at the basis of the 2008 Nobel Prize for Chemistry.
"This advance should have profound impact on the field of neurological research,” said Uwe Maskos, D.Phil., a lab chief at the Institut Pasteur (Paris, France). "Never before have we been able to see the deep reaches of the brain at the cellular level while an animal is moving freely. Gaining understanding of neurological activity throughout the brain is vital to understanding normal brain function and the kinds of alterations that lead to neurological disorders. We now have visual, microscopic access to the living, working brain that we've never had before. We can now bridge the gap between processes at the cellular, organ, and animal level.”
Dr. Maskos and his team, headed by Arnaud Cressant, collaborated with Mauna Kea Technologies (Paris, France), a medical device company, to create a portable, easy-to-use prototype cannula system to guide a tiny fiberoptic camera, Mauna Kea's Cellvizio probe-based confocal laser endomicroscope, into the mouse's brain and hold it into place and provide balance. The Cellvizio probe allows physicians to view live tissue inside the body at the cellular level in real time. Dr. Maskos presented his findings at the Society for Neuroscience 38th annual 2008 meeting in Washington DC, USA, in November 2008.
"We congratulate the Institut Pasteur team on this significant advance, which we believe could alter the research paradigm for understanding and exploring the brain and all the body's functions linked to neurological activity,” noted Sacha Loiseau, president, CEO and founder of Mauna Kea Technologies. "Cellvizio has already changed how many gastroenterologists diagnose and treat GI [gastrointestinal] disease. We're extremely excited to see Cellvizio's continuing impact on other areas of medicine and science.”
Cellvizio uses in vivo cellular imaging, a new endoscopic imaging approach that is improving both diagnostic rates, as well as the time needed to diagnose the condition. Cellvizio is the first and only confocal microscopy system that is compatible with most endoscopes and allows physicians to view live tissue inside the body at the cellular level in dynamic, real-time images at 12 frames per second. To date, over 2,000 of these procedures have been completed.
Cellvizio, the world's smallest microscope, is the first system designed to provide live images of internal human tissues at the cellular level during endoscopic procedures. This new method, known as probe-based confocal laser endomicroscopy (pCLE), allows physicians to pinpoint and remove diseased tissue with endoscopic tools on the spot, or in more serious cases, send the patient directly to surgery. This new, advanced imaging technique helps physicians more effectively detect cancer so patients can be treated earlier and undergo fewer biopsies. Physicians at more than 40 top medical institutions worldwide have completed over 2,000 of these. Cellvizio, which can be used with almost any endoscope, has 510(k) clearance from the U.S. Food and Drug Administration and the European CE marking for use in the gastrointestinal and pulmonary tracts.
Mauna Kea Technologies, which operates as Cellvizio in the United States, is a venture-backed medical device company. The Cellvizio system enables physicians to visualize, diagnose, and treat pathologies that cannot be seen using other imaging techniques.
Mauna Kea Technologies teamed up with the Pasteur Institute because of its leading role in mouse genetics and neurology over the last 40 years. Pasteur researchers have been among the very first to create transgenic and knock-in models for neurologic disorders.
Related Links:
Institut Pasteur
Mauna Kea Technologies
"This advance should have profound impact on the field of neurological research,” said Uwe Maskos, D.Phil., a lab chief at the Institut Pasteur (Paris, France). "Never before have we been able to see the deep reaches of the brain at the cellular level while an animal is moving freely. Gaining understanding of neurological activity throughout the brain is vital to understanding normal brain function and the kinds of alterations that lead to neurological disorders. We now have visual, microscopic access to the living, working brain that we've never had before. We can now bridge the gap between processes at the cellular, organ, and animal level.”
Dr. Maskos and his team, headed by Arnaud Cressant, collaborated with Mauna Kea Technologies (Paris, France), a medical device company, to create a portable, easy-to-use prototype cannula system to guide a tiny fiberoptic camera, Mauna Kea's Cellvizio probe-based confocal laser endomicroscope, into the mouse's brain and hold it into place and provide balance. The Cellvizio probe allows physicians to view live tissue inside the body at the cellular level in real time. Dr. Maskos presented his findings at the Society for Neuroscience 38th annual 2008 meeting in Washington DC, USA, in November 2008.
"We congratulate the Institut Pasteur team on this significant advance, which we believe could alter the research paradigm for understanding and exploring the brain and all the body's functions linked to neurological activity,” noted Sacha Loiseau, president, CEO and founder of Mauna Kea Technologies. "Cellvizio has already changed how many gastroenterologists diagnose and treat GI [gastrointestinal] disease. We're extremely excited to see Cellvizio's continuing impact on other areas of medicine and science.”
Cellvizio uses in vivo cellular imaging, a new endoscopic imaging approach that is improving both diagnostic rates, as well as the time needed to diagnose the condition. Cellvizio is the first and only confocal microscopy system that is compatible with most endoscopes and allows physicians to view live tissue inside the body at the cellular level in dynamic, real-time images at 12 frames per second. To date, over 2,000 of these procedures have been completed.
Cellvizio, the world's smallest microscope, is the first system designed to provide live images of internal human tissues at the cellular level during endoscopic procedures. This new method, known as probe-based confocal laser endomicroscopy (pCLE), allows physicians to pinpoint and remove diseased tissue with endoscopic tools on the spot, or in more serious cases, send the patient directly to surgery. This new, advanced imaging technique helps physicians more effectively detect cancer so patients can be treated earlier and undergo fewer biopsies. Physicians at more than 40 top medical institutions worldwide have completed over 2,000 of these. Cellvizio, which can be used with almost any endoscope, has 510(k) clearance from the U.S. Food and Drug Administration and the European CE marking for use in the gastrointestinal and pulmonary tracts.
Mauna Kea Technologies, which operates as Cellvizio in the United States, is a venture-backed medical device company. The Cellvizio system enables physicians to visualize, diagnose, and treat pathologies that cannot be seen using other imaging techniques.
Mauna Kea Technologies teamed up with the Pasteur Institute because of its leading role in mouse genetics and neurology over the last 40 years. Pasteur researchers have been among the very first to create transgenic and knock-in models for neurologic disorders.
Related Links:
Institut Pasteur
Mauna Kea Technologies
Latest General/Advanced Imaging News
- CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
- First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
- AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
- CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
Channels
Radiography
view channel
AI Detects Hidden Heart Disease in Existing CT Chest Scans
Coronary artery calcium (CAC) is a major indicator of cardiovascular risk, but its assessment typically requires a specialized “gated” CT scan that synchronizes with the heartbeat. In contrast, most chest... Read more
Ultra-Lightweight AI Model Runs Without GPU to Break Barriers in Lung Cancer Diagnosis
Artificial intelligence (AI) models typically demand enormous datasets and expensive GPU servers, creating a significant barrier to wider adoption, especially in resource-limited settings.... Read more
AI Radiology Tool Identifies Life-Threatening Conditions in Milliseconds
Radiology is emerging as one of healthcare’s most pressing bottlenecks. By 2033, the U.S. could face a shortage of up to 42,000 radiologists, even as imaging volumes grow by 5% annually.... Read more
Machine Learning Algorithm Identifies Cardiovascular Risk from Routine Bone Density Scans
A new study published in the Journal of Bone and Mineral Research reveals that an automated machine learning program can predict the risk of cardiovascular events and falls or fractures by analyzing bone... Read moreMRI
view channel
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read more
Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
Women with extremely dense breasts face a higher risk of missed breast cancer diagnoses, as dense glandular and fibrous tissue can obscure tumors on mammograms. While breast MRI is recommended for supplemental... Read moreUltrasound
view channel
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more
New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
Ultrasound computed tomography (USCT) presents a safer alternative to imaging techniques like X-ray computed tomography (commonly known as CT or “CAT” scans) because it does not produce ionizing radiation.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more