Research Could Enhance Devices Used in Medical Ultrasound Imaging
By MedImaging staff writers Posted on 09 Jun 2008 |
A team of scientists found an explanation, for the extreme sensitivity to mechanical pressure or voltage, of a special type of solid materials called relaxors. The ability to control and tailor this sensitivity would allow industry to enhance a range of devices used in medical ultrasound imaging, loudspeakers, sonar, and computer hard drives.
Relaxors are piezoelectric--they change shape when a battery is connected across opposite ends of the material, or they generate a voltage when squeezed. "Relaxors are roughly 10 times more sensitive than any other known piezoelectric,” explained researcher Peter Gehring at the U.S. National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA). They are extremely useful for device applications because they can convert between electrical and mechanical forms of energy with little energy loss.
A team of scientists from Brookhaven [U.S.] National Laboratory (Upton, NY, USA), Stony Brook University (Stony Brook, NY, USA), Johns Hopkins University (Baltimore, MD, USA), and NIST utilized the neutron scattering facilities at the NIST Center for Neutron Research (NCNR) to study how the atomic "acoustic vibrations,” which are essentially sound waves, inside relaxors respond to an applied voltage. They found that an intrinsic disorder in the chemical structure of the relaxor crystal apparently is responsible for its special properties.
Atoms in solids are usually arranged in a perfect crystal lattice, and they vibrate about these positions and propagate energy in the form of sound waves. In typical piezoelectric materials, these acoustic vibrations persist for a long time much like the ripples in a pond of water long after a pebble has been thrown in. Not so with relaxors: these vibrations rapidly die out. The investigators, led by Brookhaven's Dr. Guangyong Xu, compared how the sound waves propagated in different directions, and observed a large asymmetry in the response of the relaxor lattice when subjected to an applied voltage.
"We learned that the lattice's intrinsic chemical disorder affects the basic behavior and organization of the materials,” stated Dr. Gehring. The disorder that breaks up the acoustic vibrations makes the material structurally unstable and very sensitive to applied pressure or an applied voltage.
That disorder occurs because the well-defined lattice of atoms alternates randomly between one of three of its elements--zinc, niobium, and titanium--each of which carries a different electrical charge.
The study was published online May 11, 2008, in the journal Nature Materials.
Related Links:
National Institute of Standards and Technology
Relaxors are piezoelectric--they change shape when a battery is connected across opposite ends of the material, or they generate a voltage when squeezed. "Relaxors are roughly 10 times more sensitive than any other known piezoelectric,” explained researcher Peter Gehring at the U.S. National Institute of Standards and Technology (NIST; Gaithersburg, MD, USA). They are extremely useful for device applications because they can convert between electrical and mechanical forms of energy with little energy loss.
A team of scientists from Brookhaven [U.S.] National Laboratory (Upton, NY, USA), Stony Brook University (Stony Brook, NY, USA), Johns Hopkins University (Baltimore, MD, USA), and NIST utilized the neutron scattering facilities at the NIST Center for Neutron Research (NCNR) to study how the atomic "acoustic vibrations,” which are essentially sound waves, inside relaxors respond to an applied voltage. They found that an intrinsic disorder in the chemical structure of the relaxor crystal apparently is responsible for its special properties.
Atoms in solids are usually arranged in a perfect crystal lattice, and they vibrate about these positions and propagate energy in the form of sound waves. In typical piezoelectric materials, these acoustic vibrations persist for a long time much like the ripples in a pond of water long after a pebble has been thrown in. Not so with relaxors: these vibrations rapidly die out. The investigators, led by Brookhaven's Dr. Guangyong Xu, compared how the sound waves propagated in different directions, and observed a large asymmetry in the response of the relaxor lattice when subjected to an applied voltage.
"We learned that the lattice's intrinsic chemical disorder affects the basic behavior and organization of the materials,” stated Dr. Gehring. The disorder that breaks up the acoustic vibrations makes the material structurally unstable and very sensitive to applied pressure or an applied voltage.
That disorder occurs because the well-defined lattice of atoms alternates randomly between one of three of its elements--zinc, niobium, and titanium--each of which carries a different electrical charge.
The study was published online May 11, 2008, in the journal Nature Materials.
Related Links:
National Institute of Standards and Technology
Latest Ultrasound News
- Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
- High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
- World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
- Automated Breast Ultrasound Provides Alternative to Mammography in Low-Resource Settings
- Transparent Ultrasound Transducer for Photoacoustic and Ultrasound Endoscopy to Improve Diagnostic Accuracy
- Wearable Ultrasound Patch Enables Continuous Blood Pressure Monitoring
- AI Image-Recognition Program Reads Echocardiograms Faster, Cuts Results Wait Time
- Ultrasound Device Non-Invasively Improves Blood Circulation in Lower Limbs
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreMRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more