MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Cutting-Edge Imaging Pinpoints Where and When Hemorrhagic Stroke Has Occurred

By MedImaging International staff writers
Posted on 13 Jun 2022
Print article
Image: Team member Nicole Sylvain, with USask`s College of Medicine, in a lab at the CLS (Photo courtesy of CLS)
Image: Team member Nicole Sylvain, with USask`s College of Medicine, in a lab at the CLS (Photo courtesy of CLS)

Hemorrhagic stroke, where a weakened vessel in the brain ruptures, can lead to permanent disability or death. Across the globe, over 15 million people are coping with its effects. Time is of the essence when it comes to stroke; the sooner doctors can start treatment, the better the odds they can limit damage. Now, a new study has moved us one step closer to identifying when the bleeding associated with a hemorrhagic stroke starts - critical information for improving patient outcomes.

Using the Mid-IR beamline at the Canadian Light Source (CLS) at the University of Saskatchewan (USask, Saskatoon, Canada), the research team examined brain tissue samples with a special technique called Fourier-transform infrared imaging. The novel approach enabled the researchers to identify changes in the brain specific to hemorrhagic stroke. According to the researchers, the combination of the beamline and infrared imaging made it easy to detect markers of brain damage caused by hemorrhagic stroke.

With synchrotron technology, the team could see where a bleed originated and the extent of oxidative damage it caused – something impossible to do with a microscope or traditional approaches to imaging. Armed with this new approach, and a better understanding of what they are looking for, the researchers will now go back through their extensive “library” of stroke tissue samples to gain a clearer picture of the speed at which oxidative damage begins to ramp up. The team’s findings could eventually enable doctors to use clinical imaging – such as MRI or CT scans – to pinpoint where, and how long ago, a hemorrhagic stroke occurred in the brain. Knowing when bleeding has started can provide clinicians with a clearer picture of the time window they have to act.

“In a sense, this is giving us ‘superhuman vision’ to look at these brains and map out what’s happening metabolically,” said Dr. Jake Pushie, a member of the research team at USask’s College of Medicine.

“Being able to understand what is going on biologically, when we see any kinds of changes in the clinical images, could help doctors provide better care when it comes to minimizing the tissue damage associated with stroke,” added Miranda Messmer, another member of the research team.

Related Links:
University of Saskatchewan

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Breast Imaging Workstation
SecurView
New
Enterprise Imaging & Reporting Solution
Syngo Carbon
New
Digital Radiography Generator
meX+20BT lite

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more