We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics

By MedImaging International staff writers
Posted on 23 Dec 2021
Print article
Image: Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics (Photo courtesy of M Reichardt, T Salditt)
Image: Innovative X-Ray Imaging Showing COVID-19 Vascular Damage Could Support Routine Lab Diagnostics (Photo courtesy of M Reichardt, T Salditt)

An innovative X-ray imaging technique that shows COVID-19 can cause vascular damage to the heart could support pathologists with routine diagnostics.

An interdisciplinary research team from the Göttingen University (Göttingen, Germany) and Hannover Medical School (Hannover, Germany) has detected significant changes in the heart muscle tissue of people who died from COVID-19. Damage to lung tissue has been the research focus in this area for some time and has now been thoroughly investigated. The current study underpins the involvement of the heart in COVID-19 at the microscopic level for the first time by imaging and analyzing the affected tissue in the three dimensions.

The scientists imaged the tissue architecture to a high resolution using synchrotron radiation – a particularly bright X-ray radiation – and displayed it three-dimensionally. To do this, they used a special X-ray microscope set up and operated by the University of Göttingen at the German Electron Synchrotron DESY. They observed clear changes at the level of the capillaries (the tiny blood vessels) in the heart muscle tissue when they examined the effects there of the severe form of COVID-19 disease.

In comparison with a healthy heart, X-ray imaging of tissues affected by severe disease, revealed a network full of splits, branches and loops which had been chaotically remodeled by the formation and splitting of new vessels. These changes are the first direct visual evidence of one of the main drivers of lung damage in COVID-19: a special kind of “intussusceptive angiogenes” (meaning new vessel formation) in the tissue. In order to visualize the capillary network, the vessels in the three-dimensional volume first had to be identified using machine learning methods. This initially required researchers to painstakingly, manually label the image data.

There is a very special feature of this study: in contrast to the vascular architecture, the required data quality could be achieved using a small X-ray source in the laboratory of the University of Göttingen. In principle, this means it could also be done in any clinic to support pathologists with routine diagnostics. In the future, the researchers want to further expand the approach of converting the characteristic tissue patterns into abstract mathematical values in order to develop automated tools for diagnostics, again by further developing laboratory X-ray imaging and validating it with data from synchrotron radiation.

"To speed up image processing, we therefore also automatically broke the tissue architecture down into its local symmetrical features and then compared them," explained Marius Reichardt, at the University of Göttingen.

"The parameters obtained from this then showed a completely different quality compared to healthy tissue, or even to diseases such as severe influenza or common myocarditis," added the leaders of the study, Professor Tim Salditt from the University of Göttingen and Professor Danny Jonigk from the Hannover Medical School.

Related Links:
Göttingen University 
Hannover Medical School 

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Ultrasound Needle Guide
Ultra-Pro II
New
Ultrasound System
P20 Elite
DR Flat Panel Detector
1500L

Print article

Channels

MRI

view channel
Image: uMR Jupiter 5T MRI system is the world\'s first whole-body ultra-high field MRI to officially come to market (Photo courtesy of United Imaging)

World's First Whole-Body Ultra-High Field MRI Officially Comes To Market

The world's first whole-body ultra-high field (UHF) MRI has officially come to market, marking a remarkable advancement in diagnostic radiology. United Imaging (Shanghai, China) has secured clearance from the U.... Read more

Ultrasound

view channel
Image: The AI-powered Point Of Care Assisted Diagnosis (POCAD) solution is transforming the medical ultrasound industry (Photo courtesy of AISAP)

First AI-Powered POC Ultrasound Diagnostic Solution Helps Prioritize Cases Based On Severity

Ultrasound scans are essential for identifying and diagnosing various medical conditions, but often, patients must wait weeks or months for results due to a shortage of qualified medical professionals... Read more

Nuclear Medicine

view channel
Image: The multi-spectral optoacoustic tomography (MSOT) machine generates images of biological tissues (Photo courtesy of University of Missouri)

New Imaging Technique Monitors Inflammation Disorders without Radiation Exposure

Imaging inflammation using traditional radiological techniques presents significant challenges, including radiation exposure, poor image quality, high costs, and invasive procedures. Now, new contrast... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more