We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Tools Increase Low-Dose CT Lung Nodule Specificity

By MedImaging International staff writers
Posted on 02 Feb 2021
Print article
Image:  AI identification of lung nodule matches or bests that of trained radiologists (Photo courtesy of iStock)
Image: AI identification of lung nodule matches or bests that of trained radiologists (Photo courtesy of iStock)
Combining artificial intelligence (AI) and lung imaging reporting and data system (Lung-RADS) scores can increase CT scan specificity without reducing sensitivity, according to a new study.

Researchers at the University of Saskatchewan (Saskatoon, Canada) conducted a study that performed secondary analysis of a known data set using an AI model developed by Google in 2019, and Lung-RADS classifications from six radiologists. They then compared them to assess a representative cohort of 3,197 baseline low-dose CT screening patients. To ensure the AI algorithm matched the 91% sensitivity level achieved by the providers, the researchers determined a 0.27 AI risk-score threshold, based on a 0-to-1 scale.

The results showed that the AI-informed management strategy achieved sensitivity and specificity of 91% and 96%, respectively, while the average sensitivity and specificity of the six radiologists using only Lung-RADS was 91% and 61%, respectively. Based on the AI management strategy, 0.2% of category 1 or 2 Lung-RADS classifications were upgraded to category 3, and 30% of category 3 or higher classifications were downgraded to category 2. The minimum net cost savings, based on 2019 U.S. Medicare physician fee schedule, was USD 72 per patient screened. The study was published on January 19, 2021, in Journal of the American College of Radiology.

“Using an AI risk score combined with Lung-RADS at baseline lung cancer screening may result in fewer follow-up investigations and substantial cost savings. Specificity could rise by more than fifty percent,” concluded lead author Scott Adams, MD, and colleagues. “Additional research for other AI thresholds could also beneficial, especially for Lung-RADS category 4 nodules. Ultimately, additional investigations could lead to AI algorithms being used in a similar way to what has been suggested for screening mammography.”

Lung-RADS is a quality assurance tool designed to standardize lung cancer screening CT reporting and management recommendations, reduce confusion in lung cancer screening CT interpretations, and facilitate outcome monitoring. It is modeled on the success of the Breast Imaging Reporting and Data System (BI-RADS), with the primary goal of minimizing variation in the management of CT-detected lung nodules so that screening can be implemented effectively in radiology practices.

Related Links:
University of Saskatchewan

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Color Doppler Ultrasound System
KC20
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
Brachytherapy Planning System
Oncentra Brachy

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more