We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

COVID-19 Findings Presented at RSNA 2020 Suggest AI Can Boost CT's Performance in Predicting Disease Severity

By MedImaging International staff writers
Posted on 01 Dec 2020
Print article
Illustration
Illustration
Chest computed tomography (CT) when combined with artificial intelligence (AI) can become a valuable tool for diagnosing COVID-19, according to presentations on chest imaging made at a scientific session at the RSNA 2020.

In the first presentation, a team of scientists shared results from a study conducted by Nvidia (Santa Clara, CA, USA) that combined a deep-learning algorithm with chest CT to predict if COVID-19 patients needed to be admitted to the intensive care unit (ICU). The team analyzed 632 chest CT scans of COVID-19 patients confirmed by RT-PCR testing, out of which 69 patients were admitted to the ICU. The scientists developed a whole-lung segmentation algorithm and evaluated its effectiveness in terms of overall accuracy, sensitivity, and specificity when used along with CT. They found that the algorithm demonstrated high accuracy, specificity, and negative predictive value (NPV) in the identification of COVID-19 and predicting ICU admission by using chest CT. These findings indicate that AI can significantly improve the performance of CT in predicting COVID-19 severity.

"This deep-learning algorithm can alert the clinician to the enhanced potential of ICU admission, when combined with other clinical features," said Ziyue Xu, PhD, senior scientist at Nvidia. "Based upon chest CT alone, AI-based deep-learning algorithms can reasonably predict clinical outcomes such as ICU admission in patients with COVID-19 who underwent CT and PCR on the day of admission. The model is feasible with reasonable accuracy and specificity of prediction."

In another presentation, a team of researchers from the University of Pennsylvania (Philadelphia, PA, USA) highlighted their new approach for quantifying the percentage of lung volume involved in airspace disease on chest X-rays by using a convolutional neural network (CNN) algorithm based on 1,000 chest CT scans of COVID-19 patients. The study involved 86 patients with positive RT-PCR results who had chest CT and chest X-ray performed less than 48 hours apart. The algorithm used quantitative maps of lung tissue thickness and manifestations of airspace disease to project the CT exams' 3D lung and airspace disease segmentation on reconstructed X-rays. The researchers found that the CNN-reconstructed X-rays were as good as the human CT exam readers in quantifying airspace disease with CT recording a rate of 24.3% as against a rate of 24.4% by the CNN's digitally reconstructed X-rays.

"This approach may increase efficiency and consistency in chest x-ray interpretation of COVID-19 patients, especially when applied to longitudinal chest x-ray data to inform management," said Dr. Eduardo Jose Mortani Barbosa of the University of Pennsylvania.

Related Links:
Nvidia
University of Pennsylvania


Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Illuminator
Trimline Basic
New
Pre-Op Planning Solution
Sectra 3D Trauma
New
X-Ray Detector
FDR-D-EVO III

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more