MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

High-Resolution PET/CT Assesses Brain Stem Function

By MedImaging International staff writers
Posted on 13 Apr 2020
Print article
Positron emission tomography/computed tomography (PET/CT) imaging of the inferior colliculus (IC) can help evaluate cochlear implant sustainability in patients with hearing impairment, claims a new study.

Researchers at the University of Freiburg Medical Center (IMS; Germany) conducted a study in 13 patients with asymmetric hearing loss, who underwent 18F-FDG PET/CT imaging. The scans were reviewed by two experienced readers who examined regional glucose metabolism in the IC and the primary auditory cortex (PAC), which is known to undergo metabolic changes following external acoustical input and transformation to neuronal signals from the cochlea hair cells to the auditory nerve fibers.

The readers rated glucose metabolism as none, mild, moderate, or strong asymmetry to the left or to the right for IC and PAC separately, and determined the effect of the duration of hearing impairment. The results showed that regional glucose metabolism of both the IC and PAC was significantly reduced on the contralateral side of the poorer-hearing ear, as compared to the ipsilateral side. Longer duration of hearing impairment was also associated with a higher metabolism on the contralateral PAC. Duration of hearing impairment did not predict regional glucose metabolism for the ipsilateral PAC or either side of the IC. The study was published in the March 2020 issue of The Journal of Nuclear Medicine.

“Previous studies suggest that the association between longer duration of hearing impairment and higher glucose metabolism indicates cortical reorganization. In bilateral deaf patients this has been shown to lessen the benefits of cochlear implants,” said lead author Iva Speck, MD. “Prediction of a successful cochlear implant outcome might benefit from improved imaging with fully digital PET/CT systems, as large parts of the auditory system, including small brain nuclei such as the IC, can be assessed for preoperative patient characterization.”

In a normal ear, sound vibrations in the air lead to resonant vibrations of the basilar membrane inside the cochlea. The movement of hair cells, located all along the basilar membrane, creates an electrical disturbance that can be picked up by the surrounding nerve cells, allowing the brain to interpret the nerve activity and determine what sound frequency is being heard. The cochlear implant bypasses the hair cells and stimulates the cochlear nerves directly using electrical impulses. This allows the brain to interpret the frequency of sound as it would if the hair cells of the basilar membrane were functioning properly.

Related Links:
University of Freiburg Medical Center

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
Color Doppler Ultrasound System
DRE Crystal 4PX
New
Ceiling-Mounted Digital Radiography System
Radiography 5000 C
New
Pre-Op Planning Solution
Sectra 3D Trauma

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more