We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Graphene-Based Neural Probes Map Brain Activity

By MedImaging International staff writers
Posted on 13 Apr 2017
Print article
Image: Research show graphene-based transistor arrays could help map brain activity (Photo courtesy of ICN2).
Image: Research show graphene-based transistor arrays could help map brain activity (Photo courtesy of ICN2).
A new study describes how a sensor based on graphene can record brain activity in high resolution, while maintaining excellent signal to noise ratio (SNR).

The sensor, developed by researchers at Munich Technical University, the Catalan Institute of Nanoscience and Nanotechnology, and other institutions, uses an array of graphene solution-gated field-effect transistors (SGFETs). The flexible array of SGFETs allows mapping brain electrical activity with excellent SNR, as well as for recording spontaneous slow waves and pre-epileptic activity in vivo.

In studies in rats, the densely packed, miniature neural probes were placed directly on the surface of the brain, and were used to record signals generated by pre-epileptic activity, as well as the smaller levels of brain activity present during sleep and in response to visual light stimulation. The neural activity was detected through the highly localized electric fields generated when neurons fire. The researchers also determined that the graphene-based probes were non-toxic and non-inflammatory. The study was published on February 24, 2017, in 2D Materials.

“Graphene is one of the few materials that allows recording in a transistor configuration and simultaneously complies with all other requirements for neural probes such as flexibility, biocompability and chemical stability,” said lead author Benno Blaschke, MSc, of TU Munich. “Although graphene is not ideally suited for flexible electronics, it was a great challenge to transfer our fabrication process from rigid substrates to flexible ones. The next step is to optimize the wafer-scale fabrication process and improve device flexibility and stability.”

“Mechanical compliance is an important requirement for safe neural probes and interfaces. Currently, the focus is on ultra-soft materials that can adapt and conform to the brain surface,” said senior author Professor Jose Antonio Garrido, PhD, of ICN2. “Graphene neural interfaces have shown already great potential, but we have to improve on the yield and homogeneity of the device production in order to advance towards a real technology.”

Graphene is a monolayer atomic-scale honeycomb lattice of carbon atoms which combines the greatest mechanical strength ever measured in any material (natural or artificial) with very light weight and high elasticity. Graphene has unique optical and thermal properties which allow it to release energy in the form of heat in response to light input; it also has very high electrical conductivity. The high surface area allows bioconjugation with common biomolecules. Andre Geim and Kostya Novoselov of the University of Manchester (United Kingdom) were awarded the Nobel Prize in Physics in 2010 for its development.

Gold Member
Solid State Kv/Dose Multi-Sensor
AGMS-DM+
New
Breast Imaging Workstation
SecurView
Silver Member
Mobile X-Ray Barrier
Lead Acrylic Mobile X-Ray Barriers
New
Remote Controlled Digital Radiography and Fluoroscopy System
Eco Track-DRF - MARS 50/MARS50+/MARS 65/MARS 80

Print article

Channels

Ultrasound

view channel
Image: CAM figures of testing images (Photo courtesy of SPJ; DOI:10.34133/research.0319)

Diagnostic System Automatically Analyzes TTE Images to Identify Congenital Heart Disease

Congenital heart disease (CHD) is one of the most prevalent congenital anomalies worldwide, presenting substantial health and financial challenges for affected patients. Early detection and treatment of... Read more

Nuclear Medicine

view channel
Image: Whole-body maximum-intensity projections over time after [68Ga]Ga-DPI-4452 administration (Photo courtesy of SNMMI)

New PET Agent Rapidly and Accurately Visualizes Lesions in Clear Cell Renal Cell Carcinoma Patients

Clear cell renal cell cancer (ccRCC) represents 70-80% of renal cell carcinoma cases. While localized disease can be effectively treated with surgery and ablative therapies, one-third of patients either... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more