Metamaterials to Make MRI Scans Faster, Cheaper, and More Accurate
By MedImaging International staff writers Posted on 29 Aug 2024 |

Magnetic resonance imaging (MRI) has revolutionized how clinicians diagnose and plan treatment for various conditions by allowing noninvasive internal views of the human body. Despite its benefits, the most advanced MRI technology is often inaccessible due to its bulk, rigidity, and high cost, which limits its availability, especially in low-resource and remote areas. Aiming to make MRI technology more accessible, engineers are now innovating devices that can enhance the speed, affordability, and precision of scans. They are utilizing metamaterials—structures crafted from common materials like copper, fabric, and plastic designed to control electromagnetic waves and radio frequencies—to improve MRI capabilities significantly.
These innovations are being spearheaded by the Boston University College of Engineering (Boston, MA, USA), where engineers have introduced tools like resonators that adjust magnetic fields and wearable devices resembling jewelry that reduce scan interference. Their work includes developing "intelligent metamaterials" to speed up MRI scans and a tunable helmet designed to refine brain imaging and reduce the duration of MRI scans. These advancements are detailed across various recent journal publications. One of the latest papers, published in Advanced Science, explores wearable metamaterials that conform to body parts such as elbows or knees. The research includes devices that envelop the ankle like a brace, enhancing imaging precision. These tools use computationally designed helical resonators, constructed from plastic and thin copper coils, that fine-tune MRI magnetic fields. This technology not only boosts the signal-to-noise ratio, enhancing image clarity by minimizing background electromagnetic noise but also employs sophisticated algorithms that perform rapid 3D scans to determine optimal resonator arrangement using circle packing principles. These principles ensure that the coils are compact and effectively positioned.
Furthermore, these designs can resonate at specific frequencies and are incorporated into comfortable, wearable cuffs. Another study in Advanced Materials introduces a novel approach using coaxial cables—commonly used for internet connectivity—which are ideal for carrying and insulating high-frequency electrical signals. Researchers have developed lightweight, fabric-based wearable metamaterials that position these cables close to the scanned body part, such as the knee, enhancing the proximity and effectiveness of the MRI. Advancing their research further, in a publication in Science Advances, the team showcased a wireless, body-hugging metamaterial that passively enhances MRI signals. This design uses coaxial cables configured into freestanding cuffs without the need for fabric, optimizing signal-to-noise ratios for clearer images. These elegant structures, resembling modern art or custom jewelry, have been proven to significantly enhance the quality of MRI scans of the spine, wrist, and even individual fingers, demonstrating their potential to transform MRI accessibility and effectiveness dramatically.
“Our recent designs demonstrate several strategies for using metamaterials to boost MRI using low-cost materials, which we hope will be translated into technologies that allow more patients around the world to benefit from MRI,” said Xin Zhang, a BU College of Engineering distinguished professor of engineering, who is leading the team that hopes to expand access to MRI scans, making them faster—and cheaper.
Related Links:
Boston University College of Engineering
Latest MRI News
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
- New Scan Method Shows Effects of Treatment on Lung Function in Real Time
- Simple Scan Could Identify Patients at Risk for Serious Heart Problems
- Pioneering MRI Technique Detects Pre-Malignant Pancreatic Lesions for The First Time
Channels
Radiography
view channel
AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
A new study has revealed that an artificial intelligence (AI)-powered solution significantly improves cancer detection in single-reader mammography settings without increasing recall rates, offering a... Read more
Photon Counting Detectors Promise Fast Color X-Ray Images
For many years, healthcare professionals have depended on traditional 2D X-rays to diagnose common bone fractures, though small fractures or soft tissue damage, such as cancers, can often be missed.... Read moreUltrasound
view channel
Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
Echocardiography is a diagnostic procedure that uses ultrasound to visualize the heart and its associated structures. This imaging test is commonly used as an early screening method when doctors suspect... Read more
Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
While immunotherapy holds promise in the fight against triple-negative breast cancer, many patients fail to respond to current treatments. A major challenge has been predicting and monitoring how individual... Read moreNuclear Medicine
view channel
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read more
Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease, are often diagnosed only after physical symptoms appear, by which time treatment may no longer be effective.... Read moreGeneral/Advanced Imaging
view channel
AI Reduces CT Lung Cancer Screening Workload by Almost 80%
Lung cancer impacts over 48,000 individuals in the UK annually, and early detection is key to improving survival rates. The UK Lung Cancer Screening (UKLS) trial has already shown that low-dose CT (LDCT)... Read more
Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
Stroke is the second leading cause of death globally, claiming millions of lives each year. Ischemic stroke, in particular, occurs when a blood vessel that supplies blood to the brain becomes blocked.... Read more
AI System Detects Subtle Changes in Series of Medical Images Over Time
Traditional approaches for analyzing longitudinal image datasets typically require significant customization and extensive pre-processing. For instance, in studies of the brain, researchers often begin... Read more
New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
Cancers of the mouth, nose, and throat are becoming increasingly common in the U.S., particularly among younger individuals. Approximately 60,000 new cases are diagnosed annually, with 20% of these cases... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more