New PET/MRI Probe Enables Early Detection of Difficult-to-Detect Diseases
By MedImaging International staff writers Posted on 06 Aug 2024 |
![Image: Current PET/MRI imaging of healthy and damaged mouse kidneys using the dual contrast agent [18F][Gd(FL1)] (Photo courtesy of IOCB Prague) Image: Current PET/MRI imaging of healthy and damaged mouse kidneys using the dual contrast agent [18F][Gd(FL1)] (Photo courtesy of IOCB Prague)](https://globetechcdn.com/mobile_medicalimaging/images/stories/articles/article_images/2024-08-06/07335303929145c6da075f04f6222984507b1361.jpg)
Medicine has long searched for ways to enhance imaging techniques, aiming to integrate the advantages of magnetic resonance imaging (MRI) and positron emission tomography (PET). MRI excels in imaging internal organs and tissues rich in water content, while PET can detect minute quantities of substances, making it adept at identifying molecular markers in cancer cells. Merging these technologies posed a challenge due to the intense magnetic fields of MRI, which interfere with PET's electronic functions. However, this obstacle has been overcome with the emergence of hybrid PET/MRI machines in clinical settings. The next hurdle was creating a dual-purpose contrast agent suitable for both PET and MRI. Now, a new hybrid contrast agent has properties that make it the first serious candidate for a PET/MRI agent usable in a clinical setting.
A research team from IOCB Prague (Prague, Czech Republic), working in collaboration with the University of Tübingen (Tübingen, Germany), and the Faculty of Science, Charles University (Prague, Czech Republic) , has developed a pioneering contrast agent usable in both MRI and PET. The simple and effective approach published in Angewandte Chemie could greatly improve the diagnosis and treatment of conditions like kidney diseases and tumors. Earlier efforts to create PET/MRI probes often resulted in complex molecules with challenging synthesis and limited use. The team simplified this by developing a versatile molecule, easy to understand and use by radiologists, maintaining all beneficial properties of standard MRI contrast agents while also providing PET imaging capabilities.
The new solution is a molecule that cleverly combines gadolinium and radioactive fluorine-18, a staple in medical imaging easily accessible for use. Addressing the challenge of the vast difference in the amounts required for MRI and PET, the research team innovated by substituting nonradioactive fluorine atoms in the MRI contrast agent with radioactive fluorine-18. This process is both fast and efficient, allowing automated synthesis to produce sufficient agent for five patients in under 30 minutes. During testing in a mouse model, this agent unexpectedly revealed kidney issues in a seemingly healthy mouse. The diseased kidney displayed filtration patterns only detectable through the combined power of PET and MRI, highlighting the agent's ability to noninvasively monitor the biochemical behavior, distribution, and accumulation in real time, providing invaluable diagnostic insights.
“This method represents a pioneering step toward personalized diagnostics, showcasing the significant diagnostic potential of our hybrid molecule,” said Prof. André Ferreira Martins at the University of Tübingen. “This is a revolutionary discovery in the field of precise imaging. We are on a path that will eventually allow us to determine not only what disease a patient has but also the stage, type, and aggressiveness of the condition.”
Related Links:
IOCB Prague
University of Tübingen
Faculty of Science, Charles University
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more