AI Model Diagnoses Traumatic Brain Injury from MRI Scans With 99% Accuracy
By MedImaging International staff writers Posted on 12 Jul 2024 |

A concussion is a type of traumatic brain injury that may lead to temporary disruptions in brain function. Occurring from incidents such as sports injuries, whiplash, or a simple bump to the head, many individuals with a mild concussion may not recognize that such a minor injury could potentially lead to serious, long-term health issues if left untreated. Typically, concussion diagnosis in clinical settings relies on basic cognitive assessments like the Glasgow Coma Scale, which evaluates a patient's consciousness level, responsiveness, and memory retention. Despite these measures, it’s estimated that 50% to 90% of concussion cases are not formally diagnosed when patients visit the emergency room, increasing the risk of critical complications like brain bleeds and cognitive impairments. Now, scientists have developed a sophisticated machine learning model that can more accurately predict the concussion status in patients.
The model was built in a research collaboration between the USC Viterbi School of Engineering (Los Angeles, CA, USA) and the USC Leonard Davis School of Gerontology (Los Angeles, CA, USA) by harnessing MRI brain scan data from both healthy individuals and patients with concussions. The imaging that the classifier is based on is known as diffusion-weighted imaging, which measures how fluid travels through the brain on different connection paths.
The classifier was built using Bayesian machine learning, a probabilistic system that assigns classifications based on the features least likely to be incorrect or misclassified according to knowledge of prior conditions. The research team found that their classifier model was exceptionally accurate, demonstrating a 99% accuracy rate in identifying concussions in both the training and testing phases. This classifier holds promise as the foundation for a diagnostic tool that could be integrated into clinical practice. These findings and the development of this tool have been documented in a recent publication in the Journal of Neurotrauma.
“This is a much higher accuracy than we’ve ever seen with a method like this,” said Benjamin Hacker, who led the research team. “I think it’s because nobody had previously devised our exact pipeline of using diffusion-weighted imaging, turning it into a connectivity matrix, and then leveraging machine learning in a tailored way to discover what pathways are most affected by head trauma. It is certainly novel in that we haven’t had an imaging-based classifier for concussion that has been accurate enough to rely upon until now.”
Related Links:
USC Viterbi School of Engineering
USC Leonard Davis School of Gerontology
Latest MRI News
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more