MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Deep Learning Advances Super-Resolution Ultrasound Imaging

By MedImaging International staff writers
Posted on 23 Apr 2024
Print article
Image: The ultrasound image of a region of the brain showing strong microbubble activity from a nerve stimulation test (Photo courtesy of University of Illinois Urbana-Champaign)
Image: The ultrasound image of a region of the brain showing strong microbubble activity from a nerve stimulation test (Photo courtesy of University of Illinois Urbana-Champaign)

Ultrasound localization microscopy (ULM) is an advanced imaging technique that offers high-resolution visualization of microvascular structures. It employs microbubbles, FDA-approved contrast agents, injected into the bloodstream. These microbubbles, mere microns in size, are tracked using ultrasound waves that penetrate deep tissues, revealing the flow of blood and providing detailed images of the microvascular system. Despite its potential, the application of ULM in clinical diagnostics has been limited by its imaging speed. Speeding up the imaging process typically requires higher concentrations of microbubbles, complicating the post-processing of data. Researchers have now introduced a novel approach to enhance the practicality of ULM for clinical use by integrating advanced computational techniques in the post-processing pipeline.

Developed by researchers at the University of Illinois Urbana-Champaign (Urbana, IL, USA), this new technique, dubbed Localization with Context Awareness Ultrasound Localization microscopy (LOCA-ULM), leverages deep learning to improve the post-processing steps in ULM. The team has developed a simulation model using a generative adversarial network (GAN) to produce realistic microbubble signals. These signals are used to train a deep context-aware neural network called DECODE, designed to localize microbubbles more rapidly, accurately, and efficiently.

The innovative method not only enhances imaging performance and processing speed but also increases the sensitivity for functional ULM while offering superior in vivo imaging. Additionally, the technique improves computational and microbubble localization performance and is adaptable to different microbubble concentrations, marking a significant advancement in the field of medical imaging.

“I’m really excited about making ULM faster and better so that more people will be able to use this technology. I think deep learning-based computational imaging tools will continue to play a major role in pushing the spatial and temporal resolution limits of ULM,” said YiRang Shin, a graduate student at the University of Illinois Urbana-Champaign.

Related Links:
University of Illinois Urbana-Champaign

New
Specimen Radiography System
Trident HD
New
Ultrasound-Guided Biopsy & Visualization Tools
Endoscopic Ultrasound (EUS) Guided Devices
Wall Fixtures
MRI SERIES
New
Radiation Shielding
Oversize Thyroid Shield

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more