Ultrasound-Based 3D Printing Technology Could Enable Surgery without Cutting Open Patient
By MedImaging International staff writers Posted on 12 Dec 2023 |

The utilization of 3D-printing tools is expanding rapidly. From developing medical device prototypes and flexible electronics to engineering tissues for wound healing, the applications are diverse. Traditional 3D printing methods often involve slow, point-by-point building of the object on a robust printing platform. Over the past several years, researchers have made advances with photo-sensitive inks that quickly solidify when exposed to light, enhancing printing speed and quality. However, this method is limited by the need for transparent inks and is less effective for biomedical applications due to light's limited tissue penetration.
Now, engineers at Duke University (Durham, NC, USA) and Harvard Medical School (Boston, MA, USA) have made a significant leap forward by developing a biocompatible ink that solidifies into various 3D structures upon exposure to ultrasound waves. This new technique termed deep-penetrating acoustic volumetric printing (DVAP), enables the creation of biomedical structures deep within tissues, suitable for applications such as bone healing or heart valve repair. DVAP utilizes a specialized "sono-ink," comprising hydrogels, microparticles, and molecules designed to react specifically to ultrasound waves. When this sono-ink is introduced into the target area, an ultrasound printing probe emits focused sound waves that solidify the ink into detailed structures. These structures can vary significantly, from bone-like hexagonal scaffolds to hydrogel bubbles for organ application. The sono-ink's composition is adaptable, allowing for varying durability, degradability, or even color in the final product.
The team demonstrated DVAP's potential through three proof-of-concept experiments. In the first test, they successfully sealed a section of a goat’s heart, simulating a procedure for treating nonvalvular atrial fibrillation, which typically requires invasive surgery. The sono-ink was delivered to a goat heart’s left atrial appendage using a catheter in a printing chamber. The ultrasound probe then emitted waves through 12 mm of tissue, solidifying the ink without harming adjacent tissues, resulting in a flexible material capable of enduring heart-like movements. In a second experiment, they explored DVAP's capability for tissue reconstruction and regeneration. They created a bone defect in a chicken leg and injected the sono-ink, solidifying it through layers of skin and muscle tissue. The formed material seamlessly integrated with the bone, showing no adverse effects on nearby tissues.
Lastly, the team demonstrated DVAP's potential in therapeutic drug delivery. They infused a common chemotherapy drug into the sono-ink and delivered it to liver tissue samples. The ultrasound probe then solidified the ink into hydrogels, which gradually released the chemotherapy, diffusing it into the liver tissue. This groundbreaking approach by Duke and Harvard researchers demonstrates DVAP's vast potential in biomedical applications, offering a less invasive and more versatile alternative to traditional treatment methods.
“Because we can print through tissue, it allows for a lot of potential applications in surgery and therapy that traditionally involve very invasive and disruptive methods,” said Junjie Yao, associate professor of biomedical engineering at Duke. “This work opens up an exciting new avenue in the 3D printing world, and we’re excited to explore the potential of this tool together.”
Related Links:
Duke University
Harvard Medical School
Latest Ultrasound News
- AI Identifies Heart Valve Disease from Common Imaging Test
- Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
- Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
- Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
- Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
- High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
- World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
- Automated Breast Ultrasound Provides Alternative to Mammography in Low-Resource Settings
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more