High-Accuracy AI Model Can Improve Radiologists' Chest X-Ray Analysis Performance
By MedImaging International staff writers Posted on 04 Jul 2023 |

A recent study presents compelling evidence that a high-accuracy AI model can significantly enhance radiologists' ability to analyze chest X-rays. The study reveals that only medical AI solutions with high diagnostic accuracy can markedly improve the diagnostic performance of radiologists.
Lunit (Seoul, Korea) has shared the results of a study investigating the impact of medical AI solutions' accuracy on radiologists' diagnostic decisions. The research involved a group of 30 physicians, consisting of 20 board-certified radiologists with 5 to 18 years of experience and 10 radiology residents with 2 to 3 years of training. The group assessed a total of 120 chest radiographs collected retrospectively, half from lung cancer patients and the rest showing no abnormalities. In the initial session, the readers were split into two groups and each group analyzed 120 chest X-rays without AI assistance. In the following session, they reexamined the images using either a high-accuracy or low-accuracy AI model.
For the study, the researchers used Lunit INSIGHT CXR, a commercially available AI solution for chest X-ray analysis. The low-accuracy model, in contrast, was trained using only 10% of the data utilized for Lunit INSIGHT CXR. The AUROC (area under the receiver operating characteristic curve), a standard metric for diagnostic accuracy, for Lunit INSIGHT CXR was 0.88, while the low-accuracy AI model achieved only 0.77. The study findings showed that the use of the high-accuracy AI model, Lunit INSIGHT CXR, led to a significant enhancement in radiologists' performance. The AUROC improved remarkably from 0.77 to 0.82 when the high-accuracy AI model was used.
On the other hand, the group using the low-accuracy AI model did not witness any performance improvement, with the AUROC remaining at 0.75. Interestingly, the group utilizing the high-accuracy AI model exhibited a higher inclination to accept AI suggestions. They agreed with 67% of AI recommendations that conflicted with their initial interpretations, as opposed to a 59% acceptance rate from the group using the low-accuracy AI model. Moreover, the study concluded that individual factors such as the radiologists' expertise, their prior experience with AI, or attitudes toward AI had minimal effect on their diagnostic performance in the second session. Instead, the AI model's accuracy and the radiologists' initial diagnostic precision were identified as the primary influences on the final diagnostic outcomes. These results underscore the importance of the AI model's performance when used as a secondary reader by radiologists. They also show that such AI support can increase radiologists' receptiveness to AI suggestions, leading to more accurate diagnoses in the long run.
"The study backs that irrespective of radiologists' individual characteristics, the utilization of high-performance AI significantly enhances diagnostic accuracy and fosters a greater acceptance of AI within medical practices," said Brandon Suh, CEO of Lunit. "At Lunit, we are committed to developing AI-powered solutions that not only improve patient outcomes but also augment the expertise of healthcare professionals. This publication is a testament to our dedication to advancing the field of cancer diagnostics through cutting-edge technology."
Related Links:
Lunit
Latest Radiography News
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
Channels
MRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more