Automated Cancer Diagnostic Method Combines Cutting-Edge Ultrasound Technology with AI
By MedImaging International staff writers Posted on 07 Jun 2023 |

Each year, over 40,000 new thyroid cancer cases are reported. While 60-80% of patients with thyroid tumors undergo biopsies, the financial and potential physical toll of these procedures may be unnecessary for those with benign tumors. It is presently challenging for medical practitioners to accurately gauge the severity of a tumor, with different doctors having divergent opinions on a tumor's threat level.
Standard ultrasound methods, which generate images of tissues and organs based on the sound waves they reflect, are efficient at identifying thyroid tumors. However, the technology can struggle to distinguish the minute sounds emitted from small blood vessels, or microvasculature, from those of the surrounding tissue, despite microvasculature providing vital clues about a mass's cancerous nature. Although the introduction of contrast agents (chemicals easily visualized and commonly used in medical imaging procedures) allows ultrasound to display detailed images of tumor microvasculature, these substances need to be injected into patients and sometimes cause adverse side effects. While more recent ultrasound techniques can offer clearer nodule images, the ultimate evaluation still relies on the physicians' subjective judgment.
Researchers at the Mayo Clinic College of Medicine and Science (Rochester, MN, USA) have demonstrated that a pioneering cancer diagnostic method, which combines advanced ultrasound techniques with artificial intelligence (AI), can effectively diagnose thyroid cancer. This method — referred to as high-definition microvasculature imaging, or HDMI — noninvasively captures images of the minute vessels within tumors and, based on vessel characteristics, automatically categorizes the masses. The researchers believe that HDMI could potentially resolve the long-standing diagnostic challenge of assessing thyroid tumors in a clinical setting.
The researchers developed HDMI in an effort to develop an affordable, noninvasive imaging solution for evaluating thyroid tumors that could deliver quantifiable results and minimize errors. This system uses machine learning, a subset of AI, to assess high-resolution images of tumor microvasculature. The technique has already shown potential in accurately assessing breast tumors. In a recent study, the team tested HDMI on thyroid tumors in 92 patients. They captured images of the tumors using HDMI and analyzed a dozen features related to the size and shape of the microvasculature in the images, including their density and branching points. All patients in the study, in consultation with their physicians, chose to have their tumors biopsied to confirm their malignancy status. Those with tumors deemed cancerous underwent surgery for the removal of the mass.
The researchers provided their machine learning algorithms with 70% of their imaging data from the patient tumors, along with the malignancy status, to teach algorithms how to interpret various features. Through a process of trial and error, the algorithms constructed predictive models, which were then used to determine the status of tumors imaged in the remaining 30% of the data. HDMI's classifications were accurate 89% of the time, based on the clinical assessments of the biopsies and surgeries. These results suggest that HDMI could be a more reliable diagnostic method than traditional techniques and could spare numerous patients from unnecessary surgeries in the future. The researchers are now refining the method to enhance its accuracy even further. They plan to investigate its performance in diagnosing other types of cancer and whether it can assist in monitoring the effectiveness of chemotherapy on cancerous growths.
“Because HDMI allows you to objectively differentiate benign nodules from malignant ones, it could greatly improve diagnostic accuracy and reduce the number of unnecessary surgeries being done now,” said study author Azra Alizad, M.D., a professor of radiology and biomedical engineering at Mayo Clinic.
Related Links:
Mayo Clinic
Latest Ultrasound News
- AI Identifies Heart Valve Disease from Common Imaging Test
- Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
- Ultrasound-Based Microscopy Technique to Help Diagnose Small Vessel Diseases
- Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
- Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
- High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
- World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
- Artificial Intelligence Detects Undiagnosed Liver Disease from Echocardiograms
- Ultrasound Imaging Non-Invasively Tracks Tumor Response to Radiation and Immunotherapy
- AI Improves Detection of Congenital Heart Defects on Routine Prenatal Ultrasounds
- AI Diagnoses Lung Diseases from Ultrasound Videos with 96.57% Accuracy
- New Contrast Agent for Ultrasound Imaging Ensures Affordable and Safer Medical Diagnostics
- Ultrasound-Directed Microbubbles Boost Immune Response Against Tumors
- POC Ultrasound Enhances Early Pregnancy Care and Cuts Emergency Visits
- AI-Based Models Outperform Human Experts at Identifying Ovarian Cancer in Ultrasound Images
- Automated Breast Ultrasound Provides Alternative to Mammography in Low-Resource Settings
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more