Machine Learning Aids Diagnosis and Prognosis of Prostate Cancer Using MRI
By MedImaging International staff writers Posted on 27 Mar 2023 |

Conventional magnetic resonance imaging (MRI) is a reliable tool for prognosis, diagnosis, active surveillance, and reducing the need for biopsy procedures in lower-risk prostate cancer patients. The integration of open-source data with machine learning models has created new opportunities to study disease progression and regression, particularly in the medical field. However, effectively incorporating machine learning in patient care poses several challenges, such as optimizing machine learning approaches for specific cancers, ensuring adequate specificity of training data for a particular medical condition, and more. In this context, generative adversarial networks (GANs) are being explored as a potential solution for generating high-quality synthetic data that accurately represent the clinical variability of a condition and can be applied to a range of imaging technologies, including PET, CT, MRI, ultrasound, and X-ray imaging in the brain, abdomen, and chest. However, while there has been some success, the use of GAN models is currently limited when it comes to accurately depicting the heterogeneity of complex diseases like prostate cancer.
A team of translational researchers at the University of Miami Health System (Miami, FL, USA) is leading the way in improving GAN tools for integration with diagnostic and prognostic tools in prostate cancer research. By requiring less data and patient follow-ups, GAN has the potential to revolutionize machine learning models and reduce healthcare costs and patient discomfort associated with repeat follow-ups. The goal is to use GAN's machine learning capabilities to generate digital images that learn from previous MRI images and clinical parameters, and predict disease progression or regression patterns.
The research team conducted a study using prostate MRIs and digital pathology from multiple sources as training data to develop a GAN model. With deep learning, they trained the model to segment the prostate boundary on both MRI and histology slices, which provide microscopic tissue structures. Experts with different levels of experience evaluated the generated images against traditional MRI images of the prostate. The study demonstrated that the prostate cancer MRIs produced using the model were of high quality. Deep learning segmentation helped remove images with significant distortion, indicating that this GAN machine learning model for prostate cancer imaging has promising implications for complex patient cases.
“Timely diagnosis and assessment of prognosis are challenges for prostate cancer, and this results in many deaths and increases [risk of disease progression],” said Himanshu Arora, Ph.D., assistant professor at Sylvester and the Desai Sethi Urology Institute at the Miller School of Medicine. “We cannot replace the human eye when it comes to medical decision-making. Still, the improvement in technologies could potentially assist radiation oncologists in making timely decisions.”
“Technically, the technology developed here is the first start to building more sophisticated models of ‘data augmentation’ where new digital images can be used in further analysis. This is an early phase of our study, but the outcomes are extremely promising,” Dr. Arora added.
Related Links:
University of Miami Health System
Latest MRI News
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
- First-Of-Its-Kind 10' x 48' Mobile MRI Scanner Transforms User and Patient Experience
- New Model Makes MRI More Accurate and Reliable
- New Scan Method Shows Effects of Treatment on Lung Function in Real Time
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreUltrasound
view channel
Smart Ultrasound-Activated Immune Cells Destroy Cancer Cells for Extended Periods
Chimeric antigen receptor (CAR) T-cell therapy has emerged as a highly promising cancer treatment, especially for bloodborne cancers like leukemia. This highly personalized therapy involves extracting... Read more
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more