Accelerated MRI with AI Image Reconstruction Nearly Halves Scan Times (MI-MRI)
|
By MedImaging International staff writers Posted on 20 Jan 2023 |

Artificial intelligence (AI) can reconstruct coarsely-sampled, rapid magnetic resonance imaging (MRI) scans into high-quality images with the same diagnostic value as those generated using traditional MRI, according to a new study. Reconstructing MRI scans with AI, which is four times faster than standard scans, has the potential to expand MRI access to more patients and lower appointment wait times, the study says.
The study is part of the fastMRI initiative established by NYU Langone Health (New York, NY, USA) and Meta AI Research (New York, NY, USA) (formerly Facebook) in 2018. This initiative, aimed at using AI to make MRI faster, led to the joint development of an AI model by Meta AI researchers and NYU Langone imaging scientists and radiologists. It also created the largest-ever publicly-available collection of raw MRI data, which has been used globally by scientists and engineers.
In an earlier “proof-of-principle” study, the NYU Langone team had simulated accelerated scans by removing about three-fourths of the raw data acquired by conventional, slow MRI scans. The fastMRI AI model then generated images that matched those created from the slower scans. In the new study, the researchers performed accelerated scans with only one-fourth of the total data and used the AI model to “fill in” the missing information, similar to the way the brain builds images by filling in missing visual information from local context and previous experiences. In both the studies, the team found that fastMRI scans were as accurate as traditional scans and offered better quality.
In the new study, a total of 170 participants received a diagnostic knee MRI using a conventional MRI protocol, followed by an accelerated AI protocol between January 2020 and February 2021. All the examinations were reviewed by six musculoskeletal radiologists, who searched for signs of meniscal or ligament tears and bone marrow or cartilage abnormalities. The radiologists evaluating the scans were not aware which images were reconstructed with AI. In order to limit the potential for recall bias, the evaluations of the standard images and AI-accelerated images were spaced at least four weeks apart. The radiologists judged the AI-reconstructed images as diagnostically equivalent to the conventional images for detecting tears or abnormalities. They also found that the overall image quality of the accelerated scans was significantly better than the conventional images.
FastMRI does not require special equipment, according to the researchers. Technicians can program standard MRI machines to gather less data than is usually required. The fastMRI initiative has made its data, models, and code available as an open-source project for other researchers and manufacturers of commercial MRI systems. An MRI examination that takes as much as 30 minutes can be completed in less than five minutes by using fastMRI, making examination time for MRI comparable to that for X-rays or CT scans. However, unlike these imaging techniques, MRI provides incredibly rich information, from enabling views of soft tissues from different perspectives to highlighting small cartilage abnormalities to locating tumors in the abdomen.
“Our new study translates the results from the earlier laboratory-based study and applies it to actual patients,” said Michael P. Recht, MD, the Louis Marx Professor of Radiology and chair of the Department of Radiology at NYU Grossman School of Medicine. “FastMRI has the potential to dramatically change how we do MRI and increase accessibility of MRI to more patients.”
“The price we have paid traditionally for all of that rich information is time,” added Daniel K. Sodickson, MD, PhD, chief of innovation in the Department of Radiology and director of the Center for Advanced Imaging Innovation and Research. “If we can supercharge MRI to approach the speed of CT scans, we can make all of that important information available to everybody.”
Latest MRI News
- Novel Imaging Approach to Improve Treatment for Spinal Cord Injuries
- AI-Assisted Model Enhances MRI Heart Scans
- AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
- New MRI Technique Reveals Hidden Heart Issues
- Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
- MRI to Replace Painful Spinal Tap for Faster MS Diagnosis
- MRI Scans Can Identify Cardiovascular Disease Ten Years in Advance
- Simple Brain Scan Diagnoses Parkinson's Disease Years Before It Becomes Untreatable
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Channels
Radiography
view channel
X-Ray Breakthrough Captures Three Image-Contrast Types in Single Shot
Detecting early-stage cancer or subtle changes deep inside tissues has long challenged conventional X-ray systems, which rely only on how structures absorb radiation. This limitation keeps many microstructural... Read more
AI Generates Future Knee X-Rays to Predict Osteoarthritis Progression Risk
Osteoarthritis, a degenerative joint disease affecting over 500 million people worldwide, is the leading cause of disability among older adults. Current diagnostic tools allow doctors to assess damage... Read moreUltrasound
view channel
Wearable Ultrasound Imaging System to Enable Real-Time Disease Monitoring
Chronic conditions such as hypertension and heart failure require close monitoring, yet today’s ultrasound imaging is largely confined to hospitals and short, episodic scans. This reactive model limits... Read more
Ultrasound Technique Visualizes Deep Blood Vessels in 3D Without Contrast Agents
Producing clear 3D images of deep blood vessels has long been difficult without relying on contrast agents, CT scans, or MRI. Standard ultrasound typically provides only 2D cross-sections, limiting clinicians’... Read moreNuclear Medicine
view channel
PET Imaging of Inflammation Predicts Recovery and Guides Therapy After Heart Attack
Acute myocardial infarction can trigger lasting heart damage, yet clinicians still lack reliable tools to identify which patients will regain function and which may develop heart failure.... Read more
Radiotheranostic Approach Detects, Kills and Reprograms Aggressive Cancers
Aggressive cancers such as osteosarcoma and glioblastoma often resist standard therapies, thrive in hostile tumor environments, and recur despite surgery, radiation, or chemotherapy. These tumors also... Read more
New Imaging Solution Improves Survival for Patients with Recurring Prostate Cancer
Detecting recurrent prostate cancer remains one of the most difficult challenges in oncology, as standard imaging methods such as bone scans and CT scans often fail to accurately locate small or early-stage tumors.... Read moreGeneral/Advanced Imaging
view channel
3D Scanning Approach Enables Ultra-Precise Brain Surgery
Precise navigation is critical in neurosurgery, yet even small alignment errors can affect outcomes when operating deep within the brain. A new 3D surface-scanning approach now provides a radiation-free... Read more
AI Tool Improves Medical Imaging Process by 90%
Accurately labeling different regions within medical scans, a process known as medical image segmentation, is critical for diagnosis, surgery planning, and research. Traditionally, this has been a manual... Read more
New Ultrasmall, Light-Sensitive Nanoparticles Could Serve as Contrast Agents
Medical imaging technologies face ongoing challenges in capturing accurate, detailed views of internal processes, especially in conditions like cancer, where tracking disease development and treatment... Read more
AI Algorithm Accurately Predicts Pancreatic Cancer Metastasis Using Routine CT Images
In pancreatic cancer, detecting whether the disease has spread to other organs is critical for determining whether surgery is appropriate. If metastasis is present, surgery is not recommended, yet current... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read morePatient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more







