AI-Based MRI Pre-Screening Tool Accurately Detects Leadless Implanted Electronic Devices
By MedImaging International staff writers Posted on 28 Oct 2022 |

Small leadless implanted electronic devices (LLIEDs) have emerged as a safer alternative to lead-dependent cardiac rhythm-management devices, with advancements in miniaturization, battery technology, and communication. Intrathoracic LLIEDs can not only help in cardiac pacing but also enable the monitoring of cardiovascular and electrophysiologic activity, and non-cardiovascular physiology. However, their subsequent detection and identification (location, general category, specific type, etc.) is critical, especially prior to situations like magnetic resonance imaging (MRI) scans involving electromagnetic and radiofrequency exposures.
In pre-MRI safety screening, existing methods involving direct interaction between the patient and physician, electronic medical records (EMR) and chest X-ray (CXR) provide limited and inadequate information. They are, therefore, insufficient for the recognition of evolving, infrequently used, and much smaller LLIEDs. Moreover, the issue is compounded by the small LLIED size, suboptimal screening technique, motion-related blurring, and similarities in appearance. LLIEDs can easily be overlooked on a CXR during emergency situations. Moreover, the inability to tell whether an LLIED is a pacemaker or a recorder can put the patient at a considerable risk during MRI scan. Although both are considered “MRI conditional,” the pacemaker requires cardiology device and patient oversight before and after, and possibly during, the MRI examination.
Responding to the need for prompt and accurate detection of LLIEDs during MRI pre-screening, researchers at SPIE (Bellingham, WA, USA) had previously developed an artificial intelligence (AI)-based model. In a recent study, the research team assessed the readiness and operational prerequisites of this model with the aim of progressing towards real-world applications. For the pre-deployment assessment, the team used a two-tier cascading methodology comprising LLIED detection (tier 1) followed by classification (tier 2). They performed a five-fold cross validation during tier 1 to assess the durability of the “Original LLIED Model” initially comprising nine LLIED categories. To imitate real-world trialing, they further applied the two-tier cascading AI model on 150 new CXR images from randomly selected newer patients, already revealing three new LLIED categories.
Further, the team incorporated some essential technical developments to facilitate real-world deployment of their AI model. These included a Zero-Footprint (ZF GUI/Viewer) viewing platform for imaging, DICOM-Structured reports (DICOM-SR) for enabling end-user inference-result adjudication and, most importantly, continuous learning with the addition of the 3 new LLIED types to create a 12-class “Updated LLIED Model.” They then used new additional cases to further test this model using the two-tier methodology.
The tier 1 study yielded 100% detection/location sensitivity of LLIEDs for both the 9-class and 12-class models, and its durability was further attested by the five-fold cross validation. In tier 2, both models achieved very high accuracy in identifying the type of LLIED (MRI safety category and specific type). While no LLIEDs remained undetected in tier 1, the few cases of misidentification occurring in tier 2 were attributed to suboptimal image quality. Remarkably, the AI model did not misidentify any of the “MRI stringently conditional” or “MRI unsafe” LLIEDs.
Focusing on mimicking real-world conditions for validating their model, the team incorporated continuous learning, retraining, and modernization of AI models based on end-user experience. This was the first study of its kind to report AI-based radiographic detection and identification of LLIEDs. Going forward, the researchers plan to capitalize on these results and launch the AI model in a relevant clinical setting. They also expect to address the limitations of this study by future retraining and fine-tuning of the AI model.
“LLIEDs span a spectrum of categories based on their MRI exposure safety, from being ‘MRI conditional’ to being ‘MRI unsafe.’ Our AI model for recognizing continuously evolving LLIEDs is based on LLIED classification obtained from the identification and labeling of regions of interest from retrospective and/or future organization-wide CXR data,” explained Richard D. White, an eminent radiologist at Mayo Clinic Florida, who led the research. “While the actual value of the AI model can only be assessed in a true real-world clinical setting, these results harbor optimism in favor of deploying the AI model in the near future for assisting pre-screening evaluation by radiologists for patient safety.”
Related Links:
SPIE
Latest MRI News
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
- MRI-First Strategy for Prostate Cancer Detection Proven Safe
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more