AI Accurately Predicts Who Will Develop Pancreatic Cancer Based on CT Scans
By MedImaging International staff writers Posted on 27 Apr 2022 |

Pancreatic ductal adenocarcinoma is not only the most common type of pancreatic cancer, but is also the most deadly. Less than 10% of people diagnosed with the disease live more than five years after being diagnosed or starting treatment. But recent studies have reported that finding the cancer early can increase survival rates by as much as 50%. There currently is no easy way to find pancreatic cancer early, however. People with this type of cancer may experience symptoms such as general abdominal pain or unexplained weight loss, but these symptoms are often ignored or overlooked as signs of the cancer since they are common in many health conditions. Now, an artificial intelligence (AI) tool can accurately predict who would develop pancreatic cancer based on what their CT scan images looked like years prior to being diagnosed with the disease. The findings may help prevent death through early detection of pancreatic cancer which is one of the most challenging cancers to treat.
Investigators at Cedars-Sinai (Los Angeles, CA, USA) reviewed electronic medical records to identify people who were diagnosed with the cancer within the last 15 years and who underwent CT scans six months to three years prior to their diagnosis. These CT images were considered normal at the time they were taken. The team identified 36 patients who met these criteria, the majority of whom had CT scans done in the ER because of abdominal pain. The AI tool was trained to analyze these pre-diagnostic CT images from people with pancreatic cancer and compare them with CT images from 36 people who didn’t develop the cancer. The investigators reported that the model was 86% accurate in identifying people who would eventually be found to have pancreatic cancer and those who would not develop the cancer.
The AI model picked up on variations on the surface of the pancreas between people with cancer and healthy controls. These textural differences could be the result of molecular changes that occur during the development of pancreatic cancer. The investigators are currently collecting data from thousands of patients at healthcare sites throughout the U.S. to continue to study the AI tool’s prediction capability.
“This AI tool was able to capture and quantify very subtle, early signs of pancreatic ductal adenocarcinoma in CT scans years before occurrence of the disease. These are signs that the human eye would never be able to discern,” said Debiao Li, PhD, director of the Biomedical Imaging Research Institute, professor of Biomedical Sciences and Imaging at Cedars-Sinai, and senior and corresponding author of the study.
“There are no unique symptoms that can provide an early diagnosis for pancreatic ductal adenocarcinoma,” said Stephen J. Pandol, MD, director of Basic and Translational Pancreas Research and program director of the Gastroenterology Fellowship Program at Cedars-Sinai, and another author of the study. “This AI tool may eventually be used to detect early disease in people undergoing CT scans for abdominal pain or other issues.”
“Our hope is this tool could catch the cancer early enough to make it possible for more people to have their tumor completely removed through surgery,” said Touseef Ahmad Qureshi, PhD, a scientist at Cedars-Sinai and first author of the study.
Related Links:
Cedars-Sinai
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more