AI in Radiology Market Driven by Growing Adoption of Machine Learning Tools in Broad Spectrum of Imaging Applications
By MedImaging International staff writers Posted on 10 Nov 2021 |

Artificial intelligence (AI) tools and technologies have been making enormous impacts on various aspects of healthcare. The use of AI algorithms in medical image analysis field has made astounding progress. Particularly deep learning has made incessant inroads in radiology practice. The major consumer proposition for companies in the AI in radiology market stems from the exceptional capabilities of AI tools in recognizing complex patterns in the imaging data.
These are the latest findings of Transparency Market Research (Albany NY, USA), a next-generation market intelligence provider.
The exponential rise of clinical, molecular, imaging, and genomic data has extended the canvas for the need for utilization of advanced IT and data processing tools for assessments of radiographic characteristics, and enrich the work of radiologists. As a result, radiomics has made striking strides in recent years. The utilization of AI in radiology continues to expand, as is evident in the rise in the growing adoption of machine learning tools in broad spectrum of imaging applications, driving the AI in radiology market. Some of the key applications of AI in imaging are risk assessment, diagnosis, identification, prognosis, evaluation of risk of reoccurrence, and therapy response. Several clinically useful AI tools have been developed to meet these applications in AI in radiology market.
One of the key areas with massive potential revenues is oncology. Specifically, AI algorithms are used in a number of thoracic imaging tasks including such as lung nodules assessment for identifying whether these are benign or malignant, pneumonia detection, or estimation of diffuse lung diseases. The past few years have seen rapid technological advancements in deep learning, raising the standard of AI, which has expanded the horizon of the AI in radiology market. A number of anomalies have been found to open to detection for radiologists. Deep learning integrated with magnetic resonance imaging (MRI) has been found to make time-based assessment of the histological analysis of breast cancer. Images from other modalities are also open to a reliable scrutiny by AI methods; examples are computed tomography (CT) and positron emission tomography (PET). A case in point is the growing clinical potential of use of ML tools in pancreatic cancer analysis in CT and MRI.
Some of the end-use areas in the AI in radiology market are abdominal and pelvic imaging, colonoscopy, mammography, and brain imaging. The areas of applications continue to expand with the growing awareness about the unique capabilities of AI in radiomics. A case in point is the emerging prospects in chest computed radiography. The use cases of AI in DNA and RNA sequencing is anticipated to unlock an incredible avenue for players in the AI in the radiology market. AI tools have become a friend for radiologists, and in the near future will increasingly complement diagnosis and clinical care.
Players in the AI in radiology market are constantly striving to offer solutions that bridge the gap between training and applications in real-world populations. Hospitals also simultaneously need to upskill their healthcare staff in using complex AI systems. In effect, this is one of the key focus areas for AI tools developers in the AI in radiology market to reduce the chances of errors and prevent algorithmic biases. Another area that is replete with opportunities is ethical aspects of AI. Human designers and operators should work collaboratively to develop next-gen AI for radiology applications. The aspect should be at the crux of new product development, opines experts, and the factor will also massively shape the competitive dynamics of the AI in radiology market.
Geographically, North America is a highly lucrative AI in radiology market. Its growth has been fueled by massive advancements in deep learning tools. The healthcare industry has been increasingly benefitted from the growing practical implications of AI in radiomics. Asia Pacific is being viewed as an emerging AI in radiology market in recent years. The growing technical expertise of leveraging AI for patient well-being will propel the growth of this regional market, going forward.
Related Links:
Transparency Market Research
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
Many pediatric gliomas are treatable with surgery alone, but relapses can be catastrophic. Predicting which patients are at risk for recurrence remains challenging, leading to frequent follow-ups with... Read more
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more