We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Whole-Body MRI Combined with Deep Learning Can Detect Type 2 Diabetes

By MedImaging International staff writers
Posted on 02 Nov 2021
Image: Diabetes detection from whole-body MRI with deep learning (Photo courtesy of DZD, JCI Insight.)
Image: Diabetes detection from whole-body MRI with deep learning (Photo courtesy of DZD, JCI Insight.)

A new study has shown that type 2 diabetes can be diagnosed with a whole-body magnetic resonance imaging (MRI) scan combined with deep learning.

The study by researchers at the University of Tübingen (Tübingen, Germany) used deep learning methods and data from more than 2000 MRIs to identify patients with (pre-) diabetes. Being overweight and having a lot of body fat increase the risk of diabetes. However, not every overweight person also develops the disease. The decisive factor is where the fat is stored in the body. If fat is stored under the skin, it is less harmful than fat in deeper areas of the abdomen (known as visceral fat). How fat is distributed throughout the body can be easily visualized with whole-body MRI.

To detect such patterns of body fat distribution, the researchers used artificial intelligence (AI). They trained deep learning (machine learning) networks with whole-body MRI scans of 2,000 people who had also undergone screening with the oral glucose tolerance test (OGTT). The OGTT can screen for impaired glucose metabolism and diagnose diabetes. This is how the AI learned to detect diabetes. Further additional analysis also showed that a proportion of people with prediabetes, as well as people with a diabetes subtype that can lead to kidney disease, can also be identified via MRI scans. The researchers are now working to decipher the biological regulation of body fat distribution. One goal is to identify the causes of diabetes through new methods such as the use of AI in order to find better preventive and therapeutic options.

"We have now investigated whether type 2 diabetes could also be diagnosed on the basis of certain patterns of body fat distribution using MRI," said Prof. Robert Wagner, explaining the researchers' approach. "An analysis of the model results showed that fat accumulation in the lower abdomen plays a crucial role in diabetes detection."

University of Tübingen 

Multi-Use Ultrasound Table
Clinton
Medical Radiographic X-Ray Machine
TR30N HF
Ultrasound Needle Guidance System
SonoSite L25
Digital Intelligent Ferromagnetic Detector
Digital Ferromagnetic Detector

Channels

Nuclear Medicine

view channel
Image: Perovskite crystal boules are grown in carefully controlled conditions from the melt (Photo courtesy of Mercouri Kanatzidis/Northwestern University)

New Camera Sees Inside Human Body for Enhanced Scanning and Diagnosis

Nuclear medicine scans like single-photon emission computed tomography (SPECT) allow doctors to observe heart function, track blood flow, and detect hidden diseases. However, current detectors are either... Read more

General/Advanced Imaging

view channel
Image: The Angio-CT solution integrates the latest advances in interventional imaging (Photo courtesy of Canon Medical)

Cutting-Edge Angio-CT Solution Offers New Therapeutic Possibilities

Maintaining accuracy and safety in interventional radiology is a constant challenge, especially as complex procedures require both high precision and efficiency. Traditional setups often involve multiple... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more