SBRT Can Safely Treat Multiple Metastatic Tumors
By MedImaging International staff writers Posted on 03 May 2021 |

Image: SBRT can be used to treat multiple metastases (Photo courtesy of University of Chicago)
A new study suggests that stereotactic body radiotherapy (SBRT) can be used effectively for treating patients with multiple metastases.
Researchers at Fox Chase Cancer Center (Philadelphia, PA, USA), the University of Chicago Comprehensive Cancer Center (IL, USA), the University of Michigan (U-M; Ann Arbor, USA), and other institutions conducted a study involving 39 patients (mean age, 63.1; 20 57.1% male; 85.7% White) with breast, prostate, or non-small cell lung cancer (NSCLC), with at least three metastases or two metastases in close proximity. In all, 34.3% had breast cancer, 28.6% had NSCLC, and 37.1% had prostate cancer.
Dose levels were considered safe if dose-limiting toxicity (DLT) levels were observed in no more than one of six patients per location; otherwise, the dose at that location would be de-escalated. The primary end point was DLT related to SBRT within 180 days of treatment. Results of the phase one study showed that at the end of the trial period, primary six-month DLT endpoint was 0%, indicating that the approach was safe enough to begin phase 2/3 clinical trials in a larger group of patients. The study was published on April 22, 2021, in JAMA Oncology.
“People have been saying for years that if we used SBRT in patients with multiple, limited metastases, we could potentially cure more patients. But it's very technically complicated to do so,” said lead author Professor Steven Chmura, MD, PhD, of the University of Chicago. “The greatest challenge was having a whole team of people come together and figure out how we could define the doses and manage the real-time quality assurance to make sure every single patient had the best treatment possible.”
SBRT is emerging as an attractive option for treating cancers in the lung, head and neck, prostate, liver and other disease sites, with the objective of increasing local control of the target lesion while limiting dose to nearby critical structures and normal tissue. Requirements include precise localization of the target lesion in the treatment planning process; accounting for tumor motion due to respiration or other changes in the body; highly conformal dose distribution to the target volume, including a steep dose gradient to minimize radiation to surrounding healthy tissue; and image-guidance at the time of dose delivery for verification and adjustment of the target localization.
Related Links:
Fox Chase Cancer Center
University of Chicago Comprehensive Cancer Center
University of Michigan
Researchers at Fox Chase Cancer Center (Philadelphia, PA, USA), the University of Chicago Comprehensive Cancer Center (IL, USA), the University of Michigan (U-M; Ann Arbor, USA), and other institutions conducted a study involving 39 patients (mean age, 63.1; 20 57.1% male; 85.7% White) with breast, prostate, or non-small cell lung cancer (NSCLC), with at least three metastases or two metastases in close proximity. In all, 34.3% had breast cancer, 28.6% had NSCLC, and 37.1% had prostate cancer.
Dose levels were considered safe if dose-limiting toxicity (DLT) levels were observed in no more than one of six patients per location; otherwise, the dose at that location would be de-escalated. The primary end point was DLT related to SBRT within 180 days of treatment. Results of the phase one study showed that at the end of the trial period, primary six-month DLT endpoint was 0%, indicating that the approach was safe enough to begin phase 2/3 clinical trials in a larger group of patients. The study was published on April 22, 2021, in JAMA Oncology.
“People have been saying for years that if we used SBRT in patients with multiple, limited metastases, we could potentially cure more patients. But it's very technically complicated to do so,” said lead author Professor Steven Chmura, MD, PhD, of the University of Chicago. “The greatest challenge was having a whole team of people come together and figure out how we could define the doses and manage the real-time quality assurance to make sure every single patient had the best treatment possible.”
SBRT is emerging as an attractive option for treating cancers in the lung, head and neck, prostate, liver and other disease sites, with the objective of increasing local control of the target lesion while limiting dose to nearby critical structures and normal tissue. Requirements include precise localization of the target lesion in the treatment planning process; accounting for tumor motion due to respiration or other changes in the body; highly conformal dose distribution to the target volume, including a steep dose gradient to minimize radiation to surrounding healthy tissue; and image-guidance at the time of dose delivery for verification and adjustment of the target localization.
Related Links:
Fox Chase Cancer Center
University of Chicago Comprehensive Cancer Center
University of Michigan
Latest Nuclear Medicine News
- Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
- New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
- Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
- Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
- Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
- Innovative PET Imaging Technique to Help Diagnose Neurodegeneration
- New Molecular Imaging Test to Improve Lung Cancer Diagnosis
- Novel PET Technique Visualizes Spinal Cord Injuries to Predict Recovery
- Next-Gen Tau Radiotracers Outperform FDA-Approved Imaging Agents in Detecting Alzheimer’s
- Breakthrough Method Detects Inflammation in Body Using PET Imaging
- Advanced Imaging Reveals Hidden Metastases in High-Risk Prostate Cancer Patients
- Combining Advanced Imaging Technologies Offers Breakthrough in Glioblastoma Treatment
- New Molecular Imaging Agent Accurately Identifies Crucial Cancer Biomarker
- New Scans Light Up Aggressive Tumors for Better Treatment
- AI Stroke Brain Scan Readings Twice as Accurate as Current Method
- AI Analysis of PET/CT Images Predicts Side Effects of Immunotherapy in Lung Cancer
Channels
Radiography
view channel
Wearable X-Ray Imaging Detecting Fabric to Provide On-The-Go Diagnostic Scanning
X-rays have been instrumental in modern medical diagnostics since their discovery, from imaging broken bones to screening for early signs of breast cancer. However, traditional X-ray detectors, primarily... Read more
AI Helps Radiologists Spot More Lesions in Mammograms
Breast cancer is a critical health issue, and accurate detection through mammography is essential for effective treatment. However, interpreting mammograms can be challenging for radiologists, particularly... Read moreMRI
view channel
AI Model Outperforms Doctors at Identifying Patients Most At-Risk of Cardiac Arrest
Hypertrophic cardiomyopathy is one of the most common inherited heart conditions and a leading cause of sudden cardiac death in young individuals and athletes. While many patients live normal lives, some... Read more
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read moreUltrasound
view channel
Pain-Free Breast Imaging System Performs One Minute Cancer Scan
Breast cancer is one of the leading causes of death for women worldwide, and early detection is key to improving outcomes. Traditional methods like mammograms and ultrasound have their limitations, particularly... Read more
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more