New Technique that Could Significantly Simplify Hyperpolarized MRI Paves Way for Major Advances
By MedImaging International staff writers Posted on 30 Apr 2021 |

Image: Hyperpolarization of fumarate for use as a biosensor (Photo courtesy of John Blanchard, James Eills)
Researchers have developed a new technique that could significantly simplify hyperpolarized magnetic resonance imaging (MRI), which developed around 20 years ago for observing metabolic processes in the body, and pave the way for major advances in MRI.
An interdisciplinary team of researchers led by Johannes Gutenberg University Mainz (JGU; Mainz, Germany) discovered the promising new concept that involves the hyperpolarization of the metabolic product fumarate using parahydrogen and the subsequent purification of the metabolite.
The potential applications of MRI are hindered by its low sensitivity and the technique is essentially limited to observing water molecules in the body. Researchers are therefore constantly working on different ways of improving MRI. A major breakthrough was achieved around 20 years ago when hyperpolarized magnetic resonance imaging was first developed: Because hyperpolarized molecules emit significantly stronger MRI signals, substances that are only present in low concentrations in the body can also be visualized. By hyperpolarizing biomolecules and introducing them in patients, it is possible to track metabolism in real time, thus providing doctors with much more information.
Hyperpolarized fumarate is a promising biosensor for the imaging of metabolic processes. Fumarate is a metabolite of the citric acid cycle that plays an important role in the energy production of living beings. For imaging purposes, the fumarate is tagged with carbon-13 as the atomic nuclei of this isotope can be hyperpolarized. Dynamic nuclear polarization is the current state-of-the-art method for hyperpolarizing fumarate, but this is expensive and relatively slow. The equipment required costs one to two million Euros.
Dynamic nuclear polarization is very difficult to use in everyday clinical practice due to the related high costs and technical complexity. Using parahydrogen, the research team was able to hyperpolarize this important biomolecule in a cost-effective and convenient way. However, parahydrogen-induced polarization, or PHIP for short, also has its disadvantages. The low level of polarization and the large number of unwanted accompanying substances are particularly problematic in the case of this chemistry-based technique. Among other things, transferring the polarization from parahydrogen into fumarate requires a catalyst, which remains in the reaction fluid just like other reaction side-products.
The solution to this problem is to purify the hyperpolarized fumarate through precipitation. The fumarate then takes the form of a purified solid and can be redissolved at the desired concentration later. This creates a product from which all toxic substances have been removed, making it ready to be used in the body. In addition, compared to previous experiments with PHIP, the polarization is increased to remarkable 30 to 45%. Preclinical studies have already shown that hyperpolarized fumarate imaging is a suitable method of monitoring how tumors respond to therapy as well as for imaging acute kidney injuries or the effects of myocardial infarction. This new way of producing hyperpolarized fumarate should greatly accelerate preclinical studies and bring this technology to more laboratories.
"This technique would not only be simpler, but also much cheaper than the previous procedure," said leader of the project Dr. James Eills, a member of the research team of Professor Dmitry Budker at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM).
Related Links:
Johannes Gutenberg University Mainz
An interdisciplinary team of researchers led by Johannes Gutenberg University Mainz (JGU; Mainz, Germany) discovered the promising new concept that involves the hyperpolarization of the metabolic product fumarate using parahydrogen and the subsequent purification of the metabolite.
The potential applications of MRI are hindered by its low sensitivity and the technique is essentially limited to observing water molecules in the body. Researchers are therefore constantly working on different ways of improving MRI. A major breakthrough was achieved around 20 years ago when hyperpolarized magnetic resonance imaging was first developed: Because hyperpolarized molecules emit significantly stronger MRI signals, substances that are only present in low concentrations in the body can also be visualized. By hyperpolarizing biomolecules and introducing them in patients, it is possible to track metabolism in real time, thus providing doctors with much more information.
Hyperpolarized fumarate is a promising biosensor for the imaging of metabolic processes. Fumarate is a metabolite of the citric acid cycle that plays an important role in the energy production of living beings. For imaging purposes, the fumarate is tagged with carbon-13 as the atomic nuclei of this isotope can be hyperpolarized. Dynamic nuclear polarization is the current state-of-the-art method for hyperpolarizing fumarate, but this is expensive and relatively slow. The equipment required costs one to two million Euros.
Dynamic nuclear polarization is very difficult to use in everyday clinical practice due to the related high costs and technical complexity. Using parahydrogen, the research team was able to hyperpolarize this important biomolecule in a cost-effective and convenient way. However, parahydrogen-induced polarization, or PHIP for short, also has its disadvantages. The low level of polarization and the large number of unwanted accompanying substances are particularly problematic in the case of this chemistry-based technique. Among other things, transferring the polarization from parahydrogen into fumarate requires a catalyst, which remains in the reaction fluid just like other reaction side-products.
The solution to this problem is to purify the hyperpolarized fumarate through precipitation. The fumarate then takes the form of a purified solid and can be redissolved at the desired concentration later. This creates a product from which all toxic substances have been removed, making it ready to be used in the body. In addition, compared to previous experiments with PHIP, the polarization is increased to remarkable 30 to 45%. Preclinical studies have already shown that hyperpolarized fumarate imaging is a suitable method of monitoring how tumors respond to therapy as well as for imaging acute kidney injuries or the effects of myocardial infarction. This new way of producing hyperpolarized fumarate should greatly accelerate preclinical studies and bring this technology to more laboratories.
"This technique would not only be simpler, but also much cheaper than the previous procedure," said leader of the project Dr. James Eills, a member of the research team of Professor Dmitry Budker at Johannes Gutenberg University Mainz (JGU) and the Helmholtz Institute Mainz (HIM).
Related Links:
Johannes Gutenberg University Mainz
Latest MRI News
- Cutting-Edge MRI Technology to Revolutionize Diagnosis of Common Heart Problem
- New MRI Technique Reveals True Heart Age to Prevent Attacks and Strokes
- AI Tool Predicts Relapse of Pediatric Brain Cancer from Brain MRI Scans
- AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
- Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
- AI-Powered MRI Technology Improves Parkinson’s Diagnoses
- Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
- First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
- New Model Improves Comparison of MRIs Taken at Different Institutions
- Groundbreaking New Scanner Sees 'Previously Undetectable' Cancer Spread
- First-Of-Its-Kind Tool Analyzes MRI Scans to Measure Brain Aging
- AI-Enhanced MRI Images Make Cancerous Breast Tissue Glow
- AI Model Automatically Segments MRI Images
- New Research Supports Routine Brain MRI Screening in Asymptomatic Late-Stage Breast Cancer Patients
- Revolutionary Portable Device Performs Rapid MRI-Based Stroke Imaging at Patient's Bedside
- AI Predicts After-Effects of Brain Tumor Surgery from MRI Scans
Channels
Radiography
view channel
AI Improves Early Detection of Interval Breast Cancers
Interval breast cancers, which occur between routine screenings, are easier to treat when detected earlier. Early detection can reduce the need for aggressive treatments and improve the chances of better outcomes.... Read more
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel Radiolabeled Antibody Improves Diagnosis and Treatment of Solid Tumors
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor commonly found in solid tumors such as glioblastoma, melanoma, and breast cancer. It is minimally expressed in normal tissues, making it... Read more
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read moreGeneral/Advanced Imaging
view channel
CT-Based Deep Learning-Driven Tool to Enhance Liver Cancer Diagnosis
Medical imaging, such as computed tomography (CT) scans, plays a crucial role in oncology, offering essential data for cancer detection, treatment planning, and monitoring of response to therapies.... Read more
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more