COVID-19 Medical Imaging Center Enables AI-Driven Research to Better Understand SARS-CoV-2 Effect on Human Body
By MedImaging International staff writers Posted on 20 Aug 2020 |

Illustration
A new center hosted at the University of Chicago (Chicago, IL, USA) and co-led by the largest medical imaging professional organizations in the US will help tackle the ongoing COVID-19 pandemic by curating a massive database of medical images to help better understand and treat the disease.
Led by Prof. Maryellen Giger of UChicago Medicine, the Medical Imaging and Data Resource Center (MIDRC) will create an open-source database with medical images from thousands of COVID-19 patients. The center will be funded by a two-year, USD 20 million contract from the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health (NIH). Giger will co-lead the center with an executive advisory committee that includes members of the American College of Radiology (ACR), Radiological Society of North America (RSNA), and American Association of Physicists in Medicine (AAPM).
Medical images provide important windows into the detection, diagnosis and monitoring of diseases like COVID-19; for example, X-rays or CT scans of the lungs have the potential to help doctors determine the severity of the disease and decide on an optimal treatment course for a patient. But examining individual images is time consuming and difficult for physicians, and automated systems can improve accuracy and speed. For artificial intelligence to accurately analyze any given scan, many thousands of images first must be collected and annotated to train machine-learning algorithms.
By collecting and integrating images and their data via a dynamic, secure networked system, the MIDRC will provide a large-scale, open framework to enable technological advancements; guide researchers’ validation and use of artificial intelligence; and translate clinical systems for the best patient management decisions. Funded under the NIH’s special emergency COVID-19 process, MIDRC proposes to create an open-access platform to collect, annotate, store and share COVID-related medical images to enable effective and efficient clinical task-based distribution, analyses and validations. The MIDRC plans to soon upload more than 10,000 COVID-19 thoracic radiographs and CT scan images via the existing input portals of the RSNA repository and the ACR registry, allowing researchers worldwide to access the images and accompanying clinical data to answer new questions about the disease.
The committee also will oversee 12 research projects in support of solutions to the COVID-19 pandemic, overall providing funding and other resources to investigators at the ACR, RSNA and AAPM, as well as across 20 universities and the Food and Drug Administration. Additionally, the team hopes to expand the center into a resource that would span diseases and disciplines, creating focused medical imaging data commons and machine intelligence pipelines for chronic and other infectious diseases, with the federal contract renewable to USD 50 million over five years.
“We have not sufficiently explored imaging for its role in helping us fight COVID-19, especially in terms of developing machine intelligence tools and systems,” said Giger, the A.N. Pritzker Professor of Radiology. “Through the MIDRC Data Commons Portal, investigators will be able to access images and data to expedite research that will provide solutions to the COVID-19 pandemic. This will speed up the sharing of new research on COVID-19, answering questions about COVID-19 presentation in the lungs, the efficacy of therapies, associations between COVID-19 and other co-morbidities, and monitoring for potential resurgence of the virus.”
Related Links:
University of Chicago
Led by Prof. Maryellen Giger of UChicago Medicine, the Medical Imaging and Data Resource Center (MIDRC) will create an open-source database with medical images from thousands of COVID-19 patients. The center will be funded by a two-year, USD 20 million contract from the National Institute of Biomedical Imaging and Bioengineering at the National Institutes of Health (NIH). Giger will co-lead the center with an executive advisory committee that includes members of the American College of Radiology (ACR), Radiological Society of North America (RSNA), and American Association of Physicists in Medicine (AAPM).
Medical images provide important windows into the detection, diagnosis and monitoring of diseases like COVID-19; for example, X-rays or CT scans of the lungs have the potential to help doctors determine the severity of the disease and decide on an optimal treatment course for a patient. But examining individual images is time consuming and difficult for physicians, and automated systems can improve accuracy and speed. For artificial intelligence to accurately analyze any given scan, many thousands of images first must be collected and annotated to train machine-learning algorithms.
By collecting and integrating images and their data via a dynamic, secure networked system, the MIDRC will provide a large-scale, open framework to enable technological advancements; guide researchers’ validation and use of artificial intelligence; and translate clinical systems for the best patient management decisions. Funded under the NIH’s special emergency COVID-19 process, MIDRC proposes to create an open-access platform to collect, annotate, store and share COVID-related medical images to enable effective and efficient clinical task-based distribution, analyses and validations. The MIDRC plans to soon upload more than 10,000 COVID-19 thoracic radiographs and CT scan images via the existing input portals of the RSNA repository and the ACR registry, allowing researchers worldwide to access the images and accompanying clinical data to answer new questions about the disease.
The committee also will oversee 12 research projects in support of solutions to the COVID-19 pandemic, overall providing funding and other resources to investigators at the ACR, RSNA and AAPM, as well as across 20 universities and the Food and Drug Administration. Additionally, the team hopes to expand the center into a resource that would span diseases and disciplines, creating focused medical imaging data commons and machine intelligence pipelines for chronic and other infectious diseases, with the federal contract renewable to USD 50 million over five years.
“We have not sufficiently explored imaging for its role in helping us fight COVID-19, especially in terms of developing machine intelligence tools and systems,” said Giger, the A.N. Pritzker Professor of Radiology. “Through the MIDRC Data Commons Portal, investigators will be able to access images and data to expedite research that will provide solutions to the COVID-19 pandemic. This will speed up the sharing of new research on COVID-19, answering questions about COVID-19 presentation in the lungs, the efficacy of therapies, associations between COVID-19 and other co-morbidities, and monitoring for potential resurgence of the virus.”
Related Links:
University of Chicago
Latest Radiography News
- World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
- AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
- Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
- AI-Powered Mammograms Predict Cardiovascular Risk
- Generative AI Model Significantly Reduces Chest X-Ray Reading Time
- AI-Powered Mammography Screening Boosts Cancer Detection in Single-Reader Settings
- Photon Counting Detectors Promise Fast Color X-Ray Images
- AI Can Flag Mammograms for Supplemental MRI
- 3D CT Imaging from Single X-Ray Projection Reduces Radiation Exposure
- AI Method Accurately Predicts Breast Cancer Risk by Analyzing Multiple Mammograms
- Printable Organic X-Ray Sensors Could Transform Treatment for Cancer Patients
- Highly Sensitive, Foldable Detector to Make X-Rays Safer
- Novel Breast Cancer Screening Technology Could Offer Superior Alternative to Mammogram
- Artificial Intelligence Accurately Predicts Breast Cancer Years Before Diagnosis
- AI-Powered Chest X-Ray Detects Pulmonary Nodules Three Years Before Lung Cancer Symptoms
- AI Model Identifies Vertebral Compression Fractures in Chest Radiographs
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read more
Novel Imaging Method Enables Early Diagnosis and Treatment Monitoring of Type 2 Diabetes
Type 2 diabetes is recognized as an autoimmune inflammatory disease, where chronic inflammation leads to alterations in pancreatic islet microvasculature, a key factor in β-cell dysfunction.... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more