X-Rays and IR Reveal Secrets of Egyptian Mummies
By MedImaging International staff writers Posted on 28 Nov 2019 |

Image: X-ray and IR light-based techniques help study life in ancient Egypt (Photo courtesy of Marilyn Sargent/ LBL).
Small-angle X-ray scattering (SAXS) and infrared (IR) imaging are providing a richer understanding of daily life and environmental conditions in ancient Egypt.
Researchers from Cairo University (Egypt) and Lawrence Berkeley National Laboratory (LBL; Berkeley, CA, USA) studied 32 bone fragments and two soil samples to explore the microscopic chemistry, structure, and other properties of the remains, which represent four different dynasties in Egypt: the Middle Kingdom, the Second Intermediate Period, the Late Period, and the Greco-Roman period. The aim of the study was to identify if the chemicals and their concentrations in the bone samples were related to health, diet, and daily lives, and if chemicals in the soil had changed the bones' chemistry over time.
Using SAXS, the researchers analyzed the nanoscale patterning of collagen. A single scan of the femur bone cross-sections, which measured up to 3X5 centimeters across and about half a millimeter in thickness, took two to six hours to complete, and provided a detailed map showing how collagen was organized within the bone. The images were compared with modern bones, which revealed that ancient collagen assemblies were not as well ordered in the ancient samples as in healthy modern bones. IR studies were also conducted to define bone chemistry and mineral concentrations.
"The bones are acting like an archive. We have found lead, aluminum, and other elements that give us an indication of the environment and the toxicity of that time. That information is stored right in the bones,” said Mohamed Kasem, PhD, of Cairo University. “What's tricky is to sort out how the elements got in the bone; so many factors affect the preservation. One of them is how long the bone has been buried in soil, and also the state of the bone and the different types of soil. Differences in embalming techniques could also affect the preservation of the bone.”
“Collagen is one of the main building blocks of the body. It's found in skin, bones, internal organs, eyes, ears, blood vessels; it's one of the main things we're made of. When we shine X-rays through the collagen, the X-rays are scattered and the pattern of scattering that they make can tell us a lot about how well-preserved and well-organized the collagen is,” said Eric Schaible, PhD, of LBL. “It's very exciting to be involved in this project, and to learn about the journey these mummies have been on, in life and after death.”
Related Links:
Cairo University
Lawrence Berkeley National Laboratory
Researchers from Cairo University (Egypt) and Lawrence Berkeley National Laboratory (LBL; Berkeley, CA, USA) studied 32 bone fragments and two soil samples to explore the microscopic chemistry, structure, and other properties of the remains, which represent four different dynasties in Egypt: the Middle Kingdom, the Second Intermediate Period, the Late Period, and the Greco-Roman period. The aim of the study was to identify if the chemicals and their concentrations in the bone samples were related to health, diet, and daily lives, and if chemicals in the soil had changed the bones' chemistry over time.
Using SAXS, the researchers analyzed the nanoscale patterning of collagen. A single scan of the femur bone cross-sections, which measured up to 3X5 centimeters across and about half a millimeter in thickness, took two to six hours to complete, and provided a detailed map showing how collagen was organized within the bone. The images were compared with modern bones, which revealed that ancient collagen assemblies were not as well ordered in the ancient samples as in healthy modern bones. IR studies were also conducted to define bone chemistry and mineral concentrations.
"The bones are acting like an archive. We have found lead, aluminum, and other elements that give us an indication of the environment and the toxicity of that time. That information is stored right in the bones,” said Mohamed Kasem, PhD, of Cairo University. “What's tricky is to sort out how the elements got in the bone; so many factors affect the preservation. One of them is how long the bone has been buried in soil, and also the state of the bone and the different types of soil. Differences in embalming techniques could also affect the preservation of the bone.”
“Collagen is one of the main building blocks of the body. It's found in skin, bones, internal organs, eyes, ears, blood vessels; it's one of the main things we're made of. When we shine X-rays through the collagen, the X-rays are scattered and the pattern of scattering that they make can tell us a lot about how well-preserved and well-organized the collagen is,” said Eric Schaible, PhD, of LBL. “It's very exciting to be involved in this project, and to learn about the journey these mummies have been on, in life and after death.”
Related Links:
Cairo University
Lawrence Berkeley National Laboratory
Latest General/Advanced Imaging News
- AI-Powered Imaging System Improves Lung Cancer Diagnosis
- AI Model Significantly Enhances Low-Dose CT Capabilities
- Ultra-Low Dose CT Aids Pneumonia Diagnosis in Immunocompromised Patients
- AI Reduces CT Lung Cancer Screening Workload by Almost 80%
- Cutting-Edge Technology Combines Light and Sound for Real-Time Stroke Monitoring
- AI System Detects Subtle Changes in Series of Medical Images Over Time
- New CT Scan Technique to Improve Prognosis and Treatments for Head and Neck Cancers
- World’s First Mobile Whole-Body CT Scanner to Provide Diagnostics at POC
- Comprehensive CT Scans Could Identify Atherosclerosis Among Lung Cancer Patients
- AI Improves Detection of Colorectal Cancer on Routine Abdominopelvic CT Scans
- Super-Resolution Technology Enhances Clinical Bone Imaging to Predict Osteoporotic Fracture Risk
- AI-Powered Abdomen Map Enables Early Cancer Detection
- Deep Learning Model Detects Lung Tumors on CT
- AI Predicts Cardiovascular Risk from CT Scans
- Deep Learning Based Algorithms Improve Tumor Detection in PET/CT Scans
- New Technology Provides Coronary Artery Calcification Scoring on Ungated Chest CT Scans
Channels
Radiography
view channel
World's Largest Class Single Crystal Diamond Radiation Detector Opens New Possibilities for Diagnostic Imaging
Diamonds possess ideal physical properties for radiation detection, such as exceptional thermal and chemical stability along with a quick response time. Made of carbon with an atomic number of six, diamonds... Read more
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read moreMRI
view channel
AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans
Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read moreUltrasound
view channel.jpeg)
AI-Powered Lung Ultrasound Outperforms Human Experts in Tuberculosis Diagnosis
Despite global declines in tuberculosis (TB) rates in previous years, the incidence of TB rose by 4.6% from 2020 to 2023. Early screening and rapid diagnosis are essential elements of the World Health... Read more
AI Identifies Heart Valve Disease from Common Imaging Test
Tricuspid regurgitation is a condition where the heart's tricuspid valve does not close completely during contraction, leading to backward blood flow, which can result in heart failure. A new artificial... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more
Global AI in Medical Diagnostics Market to Be Driven by Demand for Image Recognition in Radiology
The global artificial intelligence (AI) in medical diagnostics market is expanding with early disease detection being one of its key applications and image recognition becoming a compelling consumer proposition... Read moreIndustry News
view channel
GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
GE HealthCare (Chicago, IL, USA) has entered into a collaboration with NVIDIA (Santa Clara, CA, USA), expanding the existing relationship between the two companies to focus on pioneering innovation in... Read more
Patient-Specific 3D-Printed Phantoms Transform CT Imaging
New research has highlighted how anatomically precise, patient-specific 3D-printed phantoms are proving to be scalable, cost-effective, and efficient tools in the development of new CT scan algorithms... Read more
Siemens and Sectra Collaborate on Enhancing Radiology Workflows
Siemens Healthineers (Forchheim, Germany) and Sectra (Linköping, Sweden) have entered into a collaboration aimed at enhancing radiologists' diagnostic capabilities and, in turn, improving patient care... Read more