New Machine Learning System Aids Pathologists in Cancer Diagnoses
By MedImaging International staff writers Posted on 22 Aug 2019 |
Researchers from the University of Washington (Seattle, WA, USA) and University of California (Los Angeles, CA; USA) have developed an artificial intelligence (AI) system that could help pathologists read biopsies more accurately, and lead to better detection and diagnosis of breast cancer. The new algorithm can interpret images of breast tissue biopsies to diagnose breast cancer nearly as accurately, or even better than an experienced pathologist, depending upon the task.
In 2015, a study by the UW School of Medicine found that pathologists often disagreed on the interpretation of breast biopsies, which are performed on millions of women each year. The study revealed that diagnostic errors occurred for about one out of every six women who had a non-invasive type of breast cancer called “ductal carcinoma in situ.” Additionally, incorrect diagnoses were given in about half of the biopsy cases with abnormal cells that are associated with a higher risk for breast cancer — a condition called breast atypia.
The researchers reasoned that AI could provide more accurate readings consistently as it uses a large dataset that makes it possible for the machine learning system to recognize patterns associated with cancer that are difficult for doctors to see. After studying the strategies used by pathologists during breast biopsy interpretations, the team developed image analysis methods to address these challenges. The researchers fed 240 breast biopsy images into a computer, training it to recognize patterns associated with several types of breast lesions, ranging from noncancerous and atypia to ductal carcinoma in situ and invasive breast cancer. The correct diagnoses were determined by a consensus among three expert pathologists.
The researchers then tested the system by comparing its readings with independent diagnoses made by 87 practicing US pathologists who interpreted the same cases. The algorithm came close to performing as well as the human doctors in differentiating cancer from non-cancer. However, the algorithm outperformed doctors when differentiating ductal carcinoma in situ from atypia, correctly diagnosing pre-invasive breast cancer biopsies about 89% of the time, as compared to 70% for pathologists. The researchers have already begun working on training the system to diagnose skin cancer.
“These results are very encouraging,” said the study’s co-author Dr. Joann Elmore, a professor of medicine at the David Geffen School of Medicine at UCLA, who was previously a professor of internal medicine at the UW School of Medicine. “There is low accuracy among practicing pathologists in the U.S. when it comes to the diagnosis of atypia and ductal carcinoma in situ, and the computer-based automated approach shows great promise.”
Related Links:
University of Washington
University of California
In 2015, a study by the UW School of Medicine found that pathologists often disagreed on the interpretation of breast biopsies, which are performed on millions of women each year. The study revealed that diagnostic errors occurred for about one out of every six women who had a non-invasive type of breast cancer called “ductal carcinoma in situ.” Additionally, incorrect diagnoses were given in about half of the biopsy cases with abnormal cells that are associated with a higher risk for breast cancer — a condition called breast atypia.
The researchers reasoned that AI could provide more accurate readings consistently as it uses a large dataset that makes it possible for the machine learning system to recognize patterns associated with cancer that are difficult for doctors to see. After studying the strategies used by pathologists during breast biopsy interpretations, the team developed image analysis methods to address these challenges. The researchers fed 240 breast biopsy images into a computer, training it to recognize patterns associated with several types of breast lesions, ranging from noncancerous and atypia to ductal carcinoma in situ and invasive breast cancer. The correct diagnoses were determined by a consensus among three expert pathologists.
The researchers then tested the system by comparing its readings with independent diagnoses made by 87 practicing US pathologists who interpreted the same cases. The algorithm came close to performing as well as the human doctors in differentiating cancer from non-cancer. However, the algorithm outperformed doctors when differentiating ductal carcinoma in situ from atypia, correctly diagnosing pre-invasive breast cancer biopsies about 89% of the time, as compared to 70% for pathologists. The researchers have already begun working on training the system to diagnose skin cancer.
“These results are very encouraging,” said the study’s co-author Dr. Joann Elmore, a professor of medicine at the David Geffen School of Medicine at UCLA, who was previously a professor of internal medicine at the UW School of Medicine. “There is low accuracy among practicing pathologists in the U.S. when it comes to the diagnosis of atypia and ductal carcinoma in situ, and the computer-based automated approach shows great promise.”
Related Links:
University of Washington
University of California
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
AI-Powered Imaging Technique Shows Promise in Evaluating Patients for PCI
Percutaneous coronary intervention (PCI), also known as coronary angioplasty, is a minimally invasive procedure where small metal tubes called stents are inserted into partially blocked coronary arteries... Read more
Higher Chest X-Ray Usage Catches Lung Cancer Earlier and Improves Survival
Lung cancer continues to be the leading cause of cancer-related deaths worldwide. While advanced technologies like CT scanners play a crucial role in detecting lung cancer, more accessible and affordable... Read moreMRI
view channel
Ultra-Powerful MRI Scans Enable Life-Changing Surgery in Treatment-Resistant Epileptic Patients
Approximately 360,000 individuals in the UK suffer from focal epilepsy, a condition in which seizures spread from one part of the brain. Around a third of these patients experience persistent seizures... Read more
AI-Powered MRI Technology Improves Parkinson’s Diagnoses
Current research shows that the accuracy of diagnosing Parkinson’s disease typically ranges from 55% to 78% within the first five years of assessment. This is partly due to the similarities shared by Parkinson’s... Read more
Biparametric MRI Combined with AI Enhances Detection of Clinically Significant Prostate Cancer
Artificial intelligence (AI) technologies are transforming the way medical images are analyzed, offering unprecedented capabilities in quantitatively extracting features that go beyond traditional visual... Read more
First-Of-Its-Kind AI-Driven Brain Imaging Platform to Better Guide Stroke Treatment Options
Each year, approximately 800,000 people in the U.S. experience strokes, with marginalized and minoritized groups being disproportionately affected. Strokes vary in terms of size and location within the... Read moreUltrasound
view channel
Tiny Magnetic Robot Takes 3D Scans from Deep Within Body
Colorectal cancer ranks as one of the leading causes of cancer-related mortality worldwide. However, when detected early, it is highly treatable. Now, a new minimally invasive technique could significantly... Read more
High Resolution Ultrasound Speeds Up Prostate Cancer Diagnosis
Each year, approximately one million prostate cancer biopsies are conducted across Europe, with similar numbers in the USA and around 100,000 in Canada. Most of these biopsies are performed using MRI images... Read more
World's First Wireless, Handheld, Whole-Body Ultrasound with Single PZT Transducer Makes Imaging More Accessible
Ultrasound devices play a vital role in the medical field, routinely used to examine the body's internal tissues and structures. While advancements have steadily improved ultrasound image quality and processing... Read moreNuclear Medicine
view channel
Novel PET Imaging Approach Offers Never-Before-Seen View of Neuroinflammation
COX-2, an enzyme that plays a key role in brain inflammation, can be significantly upregulated by inflammatory stimuli and neuroexcitation. Researchers suggest that COX-2 density in the brain could serve... Read more
Novel Radiotracer Identifies Biomarker for Triple-Negative Breast Cancer
Triple-negative breast cancer (TNBC), which represents 15-20% of all breast cancer cases, is one of the most aggressive subtypes, with a five-year survival rate of about 40%. Due to its significant heterogeneity... Read moreGeneral/Advanced Imaging
view channel
AI-Powered Imaging System Improves Lung Cancer Diagnosis
Given the need to detect lung cancer at earlier stages, there is an increasing need for a definitive diagnostic pathway for patients with suspicious pulmonary nodules. However, obtaining tissue samples... Read more
AI Model Significantly Enhances Low-Dose CT Capabilities
Lung cancer remains one of the most challenging diseases, making early diagnosis vital for effective treatment. Fortunately, advancements in artificial intelligence (AI) are revolutionizing lung cancer... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more