We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

Bimodal Contrast Agent Advances Medical Imaging

By MedImaging International staff writers
Posted on 19 Aug 2019
Print article
A new study details a two-in-one probe made of a contrast agent for magnetic resonance imaging (MRI) and a dye for photoacoustic imaging (PI).

Developed at the University of Mons (Belgium) and the Center of Microscopy and Molecular Imaging (CMMI; Charleroi, Belgium), the bimodal agent combines the MRI gadolinium agent Gd-PCTA, and an organic fluorophore dye called ZW800-1. A L‐lysine derivative joins the two via conventional protein end connections. The L‐lysine derivative also possesses a third connectivity, which can be of used to add another biovector, such as a peptide that specifically recognizes a biological disorder. This could make the bimodal probe trimodal.

The bimodal probe enhances MRI contrast as strongly as a commercial MRI agent, while at the same time providing a photoacoustic signal similar to the original PAI probe. The probe can thus provide hybrid images with a high anatomical resolution provided by MRI, and precise localization of the contrast agent thanks to PAI. Preliminary relaxometric and photoacoustic characterizations indicate that the bimodal agent fulfills its function. The study was published on June 26, 2019, in the European Journal of Inorganic Chemistry.

“The aim is to improve the image by combining photoacoustic imaging and magnetic resonance imaging by using a bimodal probe,” said Professor Sophie Laurent, PhD, of the University of Mons. “The organic dye enables PAI, thanks to its fluorescence in the near infrared (NIRF), and the gadolinium complex based on PCTA is ideal for MRI with radio-frequency pulses. The combination leads to a precisely localized, high-resolution bimodal image.”

Related Links:
University of Mons
Center of Microscopy and Molecular Imaging

40/80-Slice CT System
uCT 528
Silver Member
X-Ray QA Meter
T3 AD Pro
Multi-Use Ultrasound Table
Clinton
New
Specimen Radiography System
Trident HD

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more