MedImaging

Download Mobile App
Recent News Radiography MRI Ultrasound Nuclear Medicine General/Advanced Imaging Imaging IT Industry News

AI Improves Efficiency and Accuracy of Breast Cancer Imaging

By MedImaging International staff writers
Posted on 12 Aug 2019
Print article
Image: Digital breast tomosynthesis compared to mammography  (Photo courtesy of Carestream Health).
Image: Digital breast tomosynthesis compared to mammography (Photo courtesy of Carestream Health).
Artificial intelligence (AI) can help shorten digital breast tomosynthesis (DBT) reading time while maintaining or improving accuracy, claims a new study.

Researchers at the University of Pennsylvania (UPENN: Philadelphia, PA, USA), iCAD (Nashua, NH, USA), and other institutions have developed a deep learning AI system that is capable of identifying suspicious soft-tissue and calcified lesions in DBT images. The system was trained on a large DBT data set, following which its performance was tested by having 24 radiologists, including 13 breast subspecialists, each read 260 DBT examinations with and without AI assistance. The examinations included 65 cancer cases.

The results revealed that radiologist performance for the detection of malignant lesions increased from 0.795 without AI to 0.852 with AI, while reading time decreased by 52.7%, from 64.1 seconds without to 30.4 seconds with AI. Sensitivity increased from 77% without AI to 85% with AI, specificity increased from 62.7% without to 69.6% with AI, and recall rate for non-cancers decreased from 38% without to 30.9% with AI. The study was published on July 31, 2019, in Radiology: Artificial Intelligence.

“Overall, readers were able to increase their sensitivity by eight percent, lower their recall rate by seven percent, and cut their reading time in half when using AI concurrently while reading DBT cases,” said lead author Professor Emily Conant, MD, chief of breast imaging at UPENN. “The concurrent use of AI with DBT increases cancer detection, and may bring reading times back to about the time it takes to read digital mammography alone.”

DBT acquires multiple images over a limited angular range to produce a set of reconstructed images, which can then be viewed individually or sequentially in a cine loop, and in a 3D image of the breast, which can viewed in narrow slices, similar to CT scans. While in conventional 2D mammography overlapping tissues can mask suspicious areas, 3D images eliminate the overlap, making abnormalities easier to recognize. It is estimated that 3D DBT will replace conventional mammography within ten years.

Ultrasound Table
Women’s Ultrasound EA Table
Ultra-Flat DR Detector
meX+1717SCC
X-ray Diagnostic System
FDX Visionary-A
New
Specimen Radiography System
Trident HD

Print article

Channels

MRI

view channel
Image: The AI tool can help interpret and assess how well treatments are working for MS patients (Photo courtesy of Shutterstock)

AI Tool Tracks Effectiveness of Multiple Sclerosis Treatments Using Brain MRI Scans

Multiple sclerosis (MS) is a condition in which the immune system attacks the brain and spinal cord, leading to impairments in movement, sensation, and cognition. Magnetic Resonance Imaging (MRI) markers... Read more

Imaging IT

view channel
Image: The new Medical Imaging Suite makes healthcare imaging data more accessible, interoperable and useful (Photo courtesy of Google Cloud)

New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible

Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more