New AI-based Method Detects Brain Response to MS Treatment
By MedImaging International staff writers Posted on 06 Jul 2019 |
Researchers at University College London {(UCL), London, UK} and King's College London {(KCL) London, UK} have developed a new artificial intelligence (AI)-based method for detecting the brain's response to treatment in multiple sclerosis (MS). The new method has substantially higher sensitivity than conventional, radiologist-derived measures permit.
The researchers studied patients with relapsing–remitting MS who were treated with the disease-modifying drug natalizumab, where serial magnetic resonance imaging (MRI) scans were available before and after initiation of treatment. The team used machine vision to extract an "imaging fingerprint" of the state of the brain from each scan, capturing detailed changes in white and grey matter and yielding a rich set of regional trajectories over time.
In comparison to the conventional analysis of the traditional measures of total lesion and grey matter volume that a radiologist is able to extract, the AI-assisted modeling of the complex imaging fingerprints was able to discriminate between pre- and post-treatment trajectories of change with much higher accuracy. The study demonstrated that AI can be used to detect brain imaging changes in treated MS with greater sensitivity than measures simple enough to be quantified by radiologists, enabling "superhuman" performance in the task. The approach could be used to guide therapy in individual patients, detect treatment success or failure faster, and to conduct trials of new drugs more effectively and with smaller patient cohorts.
Dr. Parashkev Nachev from UCL Queen Square Institute of Neurology who led the study, said, "Rather than attempting to copy what radiologists do perfectly well already, complex computational modeling in neurology is best deployed on tasks human experts cannot do at all: to synthesize a rich multiplicity of clinical and imaging features into a coherent, quantified description of the individual patient as a whole. This allows us to combine the flexibility and finesse of a clinician with the rigor and objectivity of a machine."
Related Links:
University College London
King's College London
The researchers studied patients with relapsing–remitting MS who were treated with the disease-modifying drug natalizumab, where serial magnetic resonance imaging (MRI) scans were available before and after initiation of treatment. The team used machine vision to extract an "imaging fingerprint" of the state of the brain from each scan, capturing detailed changes in white and grey matter and yielding a rich set of regional trajectories over time.
In comparison to the conventional analysis of the traditional measures of total lesion and grey matter volume that a radiologist is able to extract, the AI-assisted modeling of the complex imaging fingerprints was able to discriminate between pre- and post-treatment trajectories of change with much higher accuracy. The study demonstrated that AI can be used to detect brain imaging changes in treated MS with greater sensitivity than measures simple enough to be quantified by radiologists, enabling "superhuman" performance in the task. The approach could be used to guide therapy in individual patients, detect treatment success or failure faster, and to conduct trials of new drugs more effectively and with smaller patient cohorts.
Dr. Parashkev Nachev from UCL Queen Square Institute of Neurology who led the study, said, "Rather than attempting to copy what radiologists do perfectly well already, complex computational modeling in neurology is best deployed on tasks human experts cannot do at all: to synthesize a rich multiplicity of clinical and imaging features into a coherent, quantified description of the individual patient as a whole. This allows us to combine the flexibility and finesse of a clinician with the rigor and objectivity of a machine."
Related Links:
University College London
King's College London
Latest Industry News News
- GE HealthCare and NVIDIA Collaboration to Reimagine Diagnostic Imaging
- Patient-Specific 3D-Printed Phantoms Transform CT Imaging
- Siemens and Sectra Collaborate on Enhancing Radiology Workflows
- Bracco Diagnostics and ColoWatch Partner to Expand Availability CRC Screening Tests Using Virtual Colonoscopy
- Mindray Partners with TeleRay to Streamline Ultrasound Delivery
- Philips and Medtronic Partner on Stroke Care
- Siemens and Medtronic Enter into Global Partnership for Advancing Spine Care Imaging Technologies
- RSNA 2024 Technical Exhibits to Showcase Latest Advances in Radiology
- Bracco Collaborates with Arrayus on Microbubble-Assisted Focused Ultrasound Therapy for Pancreatic Cancer
- Innovative Collaboration to Enhance Ischemic Stroke Detection and Elevate Standards in Diagnostic Imaging
- RSNA 2024 Registration Opens
- Microsoft collaborates with Leading Academic Medical Systems to Advance AI in Medical Imaging
- GE HealthCare Acquires Intelligent Ultrasound Group’s Clinical Artificial Intelligence Business
- Bayer and Rad AI Collaborate on Expanding Use of Cutting Edge AI Radiology Operational Solutions
- Polish Med-Tech Company BrainScan to Expand Extensively into Foreign Markets
- Hologic Acquires UK-Based Breast Surgical Guidance Company Endomagnetics Ltd.
Channels
Radiography
view channel
AI Detects Fatty Liver Disease from Chest X-Rays
Fatty liver disease, which results from excess fat accumulation in the liver, is believed to impact approximately one in four individuals globally. If not addressed in time, it can progress to severe conditions... Read more
AI Detects Hidden Heart Disease in Existing CT Chest Scans
Coronary artery calcium (CAC) is a major indicator of cardiovascular risk, but its assessment typically requires a specialized “gated” CT scan that synchronizes with the heartbeat. In contrast, most chest... Read moreMRI
view channel
New MRI Technique Reveals Hidden Heart Issues
Traditional exercise stress tests conducted within an MRI machine require patients to lie flat, a position that artificially improves heart function by increasing stroke volume due to gravity-driven blood... Read more
Shorter MRI Exam Effectively Detects Cancer in Dense Breasts
Women with extremely dense breasts face a higher risk of missed breast cancer diagnoses, as dense glandular and fibrous tissue can obscure tumors on mammograms. While breast MRI is recommended for supplemental... Read moreUltrasound
view channel
Wireless Chronic Pain Management Device to Reduce Need for Painkillers and Surgery
Chronic pain affects millions of people globally, often leading to long-term disability and dependence on opioid medications, which carry significant risks of side effects and addiction.... Read more
New Medical Ultrasound Imaging Technique Enables ICU Bedside Monitoring
Ultrasound computed tomography (USCT) presents a safer alternative to imaging techniques like X-ray computed tomography (commonly known as CT or “CAT” scans) because it does not produce ionizing radiation.... Read moreNuclear Medicine
view channel
Novel Bacteria-Specific PET Imaging Approach Detects Hard-To-Diagnose Lung Infections
Mycobacteroides abscessus is a rapidly growing mycobacteria that primarily affects immunocompromised patients and those with underlying lung diseases, such as cystic fibrosis or chronic obstructive pulmonary... Read more
New Imaging Approach Could Reduce Need for Biopsies to Monitor Prostate Cancer
Prostate cancer is the second leading cause of cancer-related death among men in the United States. However, the majority of older men diagnosed with prostate cancer have slow-growing, low-risk forms of... Read moreGeneral/Advanced Imaging
view channel
CT Colonography Beats Stool DNA Testing for Colon Cancer Screening
As colorectal cancer remains the second leading cause of cancer-related deaths worldwide, early detection through screening is vital to reduce advanced-stage treatments and associated costs.... Read more
First-Of-Its-Kind Wearable Device Offers Revolutionary Alternative to CT Scans
Currently, patients with conditions such as heart failure, pneumonia, or respiratory distress often require multiple imaging procedures that are intermittent, disruptive, and involve high levels of radiation.... Read more
AI-Based CT Scan Analysis Predicts Early-Stage Kidney Damage Due to Cancer Treatments
Radioligand therapy, a form of targeted nuclear medicine, has recently gained attention for its potential in treating specific types of tumors. However, one of the potential side effects of this therapy... Read moreImaging IT
view channel
New Google Cloud Medical Imaging Suite Makes Imaging Healthcare Data More Accessible
Medical imaging is a critical tool used to diagnose patients, and there are billions of medical images scanned globally each year. Imaging data accounts for about 90% of all healthcare data1 and, until... Read more